
1. Introduction

Many natural phenomena experience rapid change. As 

a result, regular measurements must be taken in order to 

determine the current state of a natural system. Natural 

systems include weather, vegetation, animal herds, and coral 

reef health. Without frequent measurements, the difference 

between the estimated state of these dynamic systems and 

the true state can grow arbitrarily large. Sensor networks 

have been successfully applied and utilized in many real-

world domains in order to automate the measurement 

process. However, but these domains possess characteristics 

that may limit how the sensors are deployed. Complete 

sensor coverage of any real-world domain is impractical 

because of excessive cost, time and effort. For example, it is 

considerably easier to deploy permanent weather sensors 

on land than over open ocean areas. Given finite resources, 

the amount of sensor information, and therefore the quality 

of the state estimate, is typically unevenly distributed across 
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the system. 

The fast moving dynamics of natural domains present 

two challenges. Firstly, the state dynamics are strongly 

coupled, meaning that part of the system can often have far-

reaching influence on the rest of the system. Secondly, the 

state dynamics are also chaotic; in other words, very small 

changes in the current state can lead to very large changes 

in the future. As a result, if some parts of the system are not 

sufficiently known and accurately described, the accuracy 

of the estimated state of the whole system is significantly 

reduced, as is our ability to produce predictions about the 

future state. 

Additional measurements may improve the accuracy 

of state predictions. However, given finite resources, only 

a subset of the state can be measured with additional 

sensors. For mobile sensors, care must be given to choosing 

the locations in the system that will maximally reduce the 

expected error of future predictions. In particular, dynamic 

system prediction frequently uses a probabilistic form of 

filtering in which a probability distribution over the state 

is maintained. If the state is normally distributed with a 

mean and covariance, the sequence of measurements 

that minimizes some norm on the covariance is usually 

preferred. 

The path selection problem (or “informative path 

planning” problem) may be straightforwardly solved if the 

posterior covariance can be computed efficiently subsequent 

to taking a sequence of the measurements (Berliner et al., 

1999; Choi and How, 2010b). When the system dynamics 

are linear (and any perturbations to the system or to the 

measurements are Gaussian), the posterior covariance given 

a sequence of measurements can be easily and accurately 

computed using the Kalman filter (EKF). However, when 

the dynamics are nonlinear, the calculation of the posterior 

must be approximate. In particular, when the dynamics are 

chaotic, complex, and of large-scale, Monte-Carlo methods 

are often used to estimate these nonlinear systems  (Furrer 

and Bengtsson, 2007). The ensemble Kalman filter (EnKF) 

is one such Monte-Carlo filtering algorithm that has seen 

intensive use in numerical weather prediction (NWP) and 

other environmental sensing applications (Ott et al., 2004).

Evaluating a set of candidate measurement plans requires 

a set of Monte-Carlo simulations as a means for predicting 

the posterior covariance for each plan  (Choi and How, 

2010b). This process can be computationally demanding 

for large-scale nonlinear systems because producing an 

accurate prediction typically requires many samples for 

predicting the mean and covariance of the system state (Choi 

et al., 2008). Furthermore, additional measurements, which 

remain unknown during the planning time, will affect the 

evolution of the covariance; we need the ability to revise the 

plan quickly upon receiving new measurements. Therefore, 

an efficient way of predicting future covariances given a 

set of measurements is essential to tractable planning of 

informative paths in large-scale nonlinear systems. 

In this paper, we present the trajectory planning of a 

mobile sensor as a means for improving numerical weather 

predictions. Our primary contribution is to show that the 

planning process can be made substantially more efficient 

by replacing the Monte-Carlo simulation with an explicit 

model of covariance dynamics learned using a time-series 

regression. The regressed model is orders of magnitude faster 

to evaluate within the trajectory optimization. We also show 

that its accuracy of covariance prediction is better than other 

possible approximations such as linearization or partial use 

of the Monte-Carlo samples. 

2. System Models and Forecasting

This work considers a large-scale dynamical system 

over a grid in which each cell represents a small region of 

the overall system and is associated with state variables 

representing physical quantities (e.g., temperature, pressure, 

concentration, wind speed) in the corresponding region. 

Without loss of generality, it is assumed that only one state 

variable is associated with a cell. The dynamics of the state 

variables are described by differential equations (Lorenz and 

Emanuel, 1998). 

ṡt, i = fi(st), i∈{1, 2, ..., ns} (1)

where St,i∈R denotes the state variable at the i-th grid point 

at time t, and nS is the total number of grid points. We denote 

all state variables by the state vector St∈Rns. The dynamics fi : 

Rns : Sn
if    R are given by an arbitrary nonlinear function. 

Knowing the current state of a system st, we can use it as 

the initial condition for the dynamics in Eq. (1), to compute a 

forecast of the system state in the future. However, we rarely 

know the true state of the system, but must take multiple 

(noisy) measurements of the system state, and use a filtering 

process to estimate st from these the measurements of the 

system and our knowledge of the system dynamics. The 

measurements zt at time t are modeled as 

zt = h(st, wt) (2)

where h is the observation function, mapping state variables 

and sensing noise wt to the measurements. In many 

sensing problems, especially in environmental sensing, the 

measurements are direct observations of the state variables 

subject to additive Gaussian sensing noise. In this case, the 
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measurement at the i-th grid point is given by 

zt = st, i+wt, i (3)

where wt,i~N(0,Wi) and E[wt,i  wt,j]=0, i ≠ j.
In order to mitigate the effect of measurement noise, a 

probabilistic estimate P(st) of the state variables is typically 

computed using standard filtering algorithms. In many 

cases, the measurements are regularly taken at intervals, and 

recursive filtering algorithms that do not require access to 

the complete history of measurements are used. Standard 

recursive filtering algorithms consist of two steps. 

Prediction: P(st|z0:t) → P(st+1|z0:t) (4)

Update: P(st+1|z0:t) → P(st+1|z0:t+1) (5)

where the prediction step gives the posterior distribution 

due to the dynamics, following the system dynamics f=Δ [f1, ..., 

fns]
T and the update step incorporates the information from 

new measurements. 

If P(st) is Gaussian, the first (mean) and the second 

(covariance) moments are sufficient statistics for describing 

the conditional distributions. For this case, the mean μt 

provides the best estimate of the state variables and the 

covariance Σt represents the uncertainty of the estimates. 

In order to distinguish the two distributions after prediction 

and update, we denote the two moments after prediction 

by μ f and Σ f, and after update by μ a and Σa, following the 

convention of the weather community (Ott et al., 2004) 

where f denotes forecast and a denotes analysis. 

When P(st) is non-Gaussian, the first and the second 

moments are used to approximately describe the distribution. 

Given the state estimate P(st|z0:t), the T-timestep forecast 

P(st+T|z0:t) can be made by performing only the prediction 

steps for T timesteps. The mean of the distribution μt+T then 

gives the forecast of the state variables and the covariance 

Σt+T gives the uncertainty of the forecast. As expected, the 

accuracy of the prediction may decrease with longer T.

2.1 Ensemble forecasting

The EnKF (Evensen and Van Leeuwen, 1996) (and it 

variants  [Ott et al., 2004; Whitaker and Hamill, 2002]) is 

a Monte-Carlo (ensemble) version of the extended EKF. 

Monte-Carlo methods are often used to estimate nonlinear 

systems, especially when the system dynamics are chaotic, 

complex, and large-scale (Furrer and Bengtsson, 2007). 

The EnKF is one such Monte-Carlo filtering algorithm that 

has seen intensive use in numerical weather prediction 

(NWP) and other environmental sensing applications  (Ott 

et al., 2004), since it typically represents the nonlinear 

features of the complex large-scale system, and mitigate the 

computational burden of linearizing the nonlinear dynamics 

and keeping track of a large covariance matrix (Evensen and 

Van Leeuwen, 1996; Whitaker and Hamill, 2002), compared 

to the EKF. 

In the EnKF, a set of possible state variable values is 

maintained in an ensemble matrix S∈Rns×nE in which each 

column of the matrix is an ensemble member, that is, a 

possible state: 

S = [s1, s2, ..., snE] (6)

where nE is the size of the ensemble (number of Monte-Carlo 

samples). The prediction step corresponds to the nonlinear 

dynamics integration of an individual ensemble member 

4
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A complete derivation of the EnKF is outside the scope 

of this paper; a full explanation of this nonlinear estimation 

method can be found in Whitaker and Hamill (2002).

3. Informative Path Planning

A significant problem existing in current operational 

systems for environmental sensing is that the measurements 

are unevenly distributed. Even with a perfect system dynamics 

model, the forecast of the system may degrade greatly for 

forecasts made far into the future, as the poor state estimate 
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propagates to other regions over multiple steps of forecasting 

(Morss et al., 2001). While additional measurements of the 

initial state estimate will clearly improve the forecast, the 

number of resources available to take measurements, such 

as unmanned aerial vehicle (UAV)-borne sensors, is finite. 

Furthermore, measurements at different locations and times 

possess different amounts of information due to the spatio-

temporal correlations of the state variables. To make the 

most effective use of finite resources, we must consider the 

value of the possible measurements in terms of prediction 

performance (Berliner et al., 1999; Choi and How, 2010a, b; 

Morss et al., 2001), and choose to measure the state variables 

that maximize the prediction accuracy. 

3.1 Adaptive targeting

Adaptive observation targeting has proven to be an 

important variant for informative path planning. Researchers 

have maintained great interest in adaptive observation 

targeting within the context of numerical weather prediction 

in which the figure of merit is forecast performance at a 

verification region (Choi and How, 2010b). For example, 

a goal may be established to take measurements over the 

Pacific to maximize the forecast accuracy for California, the 

verification region. The verification region is usually a small 

subset of the overall system; we denote the cells in this region 

by V. 

There are also three important times in the weather 

targeting problem: 

• Planning time Tp∈Z : the planning starts at Tp. 

• �Forecast time Tf ∈Z : the time at which the last 

measurement will be taken, and a forecast will be 

generated. The entire planning, execution and forecasting 

process must be completed by Tf. 

• �Verification time Tv∈Z : the time at which the forecast 

will be tested. For instance, a 4-day forecast made at 9th 

September 2008 (Tf) will be verified at 13th September 

2008 (Tv).

We can write the planning problem formally as 

p* ∈ arg minp∈ρ J(Σ f
Tv (V )) (11)

subject to Σ f
t+1=F(μa

t, Σa
t), ∀t[Tp-1, Tv-1]∩Z

Σa
t  =M(μa

t, Σ f
t , pt), ∀t[Tp, Tv]∩Z

Σa
t  =given

where Σ(V) is the sub-block covariance of the cells in the 

verification region V, p≡{p1, p2, ..., pK}∈Zk is a sequence of 

cells that a sensor platform will visit over the time window 

[Tp, Tf]. F(·) is the covariance dynamics function that provides 

the posterior distribution after the prediction step. Note that 

this function is not known in most cases; the EnKF simulates 

it by Monte-Carlo simulation and the EKF approximates it 

with linearization of the system dynamics. M(·, p) denotes 

the measurement update through the measurement taken 

at location p. The measurement taken after the forecast time 

Tf is typically not of great concern (Bishop et al., 2001). The 

set P is the feasible set of p that satisfies certain constraints 

such as motion of the sensing platforms. J(·) is a measure of 

uncertainty, and p* is the optimal path which minimizes the 

uncertainty measure. This can be easily extended to a multi-

agent problem where each agent chooses a path, and the 

collective information gain on V by these agents is optimized. 

Typically, trace or entropy of the covariance matrix are used 

as the measures of uncertainty (Berliner et al., 1999; Choi 

and How, 2010a). We use trace in this work, but the work can 

be generalized to entropy. Additionally, while we can design 

a sequence of future sensing points based on the knowledge 

available at the current decision time Tp, the evolution of 

covariance Σ requires the actual values of measurement in the 

future (i.e., the actual values of ztk(pk), which are not available 

at Tp. This is an unavoidable source of the approximation to 

the covariance propagation and the planning algorithm may 

need to quickly cope with changes in the state of the system 

due to new measurements. 

Note that the covariance dynamics function F(·), which 

represents the prediction of the covariance, is unknown in 

most cases; the EnKF simulates this function through Monte-

Carlo simulation. Similarly, M(·, p) denotes the measurement 

update through the measurement taken at location p. For the 

prediction step, computing the covariance dynamics requires 

a long series of complex nonlinear integrations of each 

Monte-Carlo sample, as in Eq. (7). The forecast computation 

can be arbitrarily slow when more samples are used to 

improve the simulation of the covariance dynamics (Furrer 

and Bengtsson, 2007; Houtekamer and Mitchell, 2001). In 

the next section, we suggest that the direct learning of the 

input-output relationship of the Monte-Carlo simulation 

can provide fast and accurate approximations of covariance 

dynamics.

3.2 Local path planning

The informative path planning problem in a dynamic 

system is inherently an NP-hard problem (Choi and How, 

2010b; Krause et al., 2008), as every possible plan sequence 

must be evaluated while the number of possible sequences 

exponentially grow with the length of the planning horizon. 

Given the large size of the domains under consideration, 

a multi-scale planning approach may be desired. While 

finding the global path is computationally infeasible, finding 

the best local path within a small region may be feasible. 
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Furthermore, there are some planning schemes available, 

which utilize locally optimal paths that make better choices at 

higher levels (Choi and How, 2010a). The local path planning 

task entails choosing the most informative path to move in 

between two waypoints, maximally reducing the uncertainty 

in the region between the waypoints. This decision making 

can also be addressed with the formulation in Eq. (11) by 

setting Tf =Tv and taking the verification region V as the local 

sub-region between the start point and the endpoint.

4. Covariance Dynamics Learning

We wish to approximate the covariance dynamics, which 

we model as a nonlinear function F so that 

F(P(st)) = Σt+1 (13)

where P(st) is the probability distribution of st described 

by its statistical moments 

P(st) ≈ P{μ, Σt} (14)

where μt is the first moment, the mean vector, and Σt is the 

second moment, the covariance matrix. The covariance 

dynamics F is unknown in analytic form, but is induced by 

the system dynamics, and is approximated by Monte-Carlo 

simulation in the EnKF. 

Since we do not know the exact form of F(·), we propose 

to learn an approximator (equivalently, model or function) 

F̂ from past input-output samples of the Monte-Carlo 

simulations of the covariance dynamics F, called training 

samples in machine learning literature (Evgeniou et al., 

2000). Additionally, we will derive important features from 

the input, transforming the input data into real-valued 

vectors of the same length xt,

F(P(st)) ≈ F̂(xt) (15)

Specifically, regression is used in order to learn a model 

with continuous-valued output. Regression learns a target 

function g given a finite number of training samples; 

inputs X=(x1, x2, ..., xn) and outputs y=(y1, y2, ..., yn), where 

g(xi)=yi∈R, ∀i{1, ..., n}. The learned model ĝ is expected to 

have the property

ĝ(xi)=yi+ei where E[ei]=0, ∀i, and E[eiej]=o for i≠j (16)

The learning approach aims to achieve accuracy by relying 

on nonlinear features of the input to represent the complex 

nonlinear function F, which is contrasted to the linearization 

of the EKF that assumes local linearity of system dynamics. 

The other important advantage in using the regression 

approach is that the accuracy of the covariance dynamics 

approximation increases with the number of Monte-

Carlo samples used in the original simulation, without the 

penalty of the increasing computation time. The reason is 

that the original simulation will become increasingly slow 

with more Monte-Carlo samples, but will provide a better 

approximation of the covariance dynamics. This results in 

training samples that will act as more accurate examples of 

the true covariance dynamics F. Still, the computation time 

for learning F̂ and the prediction time of using the learned 

model F̂ will remain nearly the same, being independent of 

the accuracy of the training samples (Evgeniou et al., 2000). 

In principle, we can learn a predictor of any function of 

the future covariance; for example, a direct mapping from 

the current covariance to the trace of the verification sub-

block of the covariance after k timesteps with measurements 

taken along path p, 

F̂V
K (P(st), p) ≈ trace {Σ f

t+k(V)}. (17)

However, we argue that learning the one-step approximator 

F̂ is the best approach. One has to consider the fact that 

as the target function becomes more complicated, more 

training samples and sophisticated features may be required. 

While generating more training samples only requires more 

Monte-Carlo simulations, finding sophisticated features 

requires finding a proper transformation of the original 

features through many trial and error investigations (Guyon 

and Elisseeff, 2003). In addition, learning common functions 

which can be applied for different paths may be preferred. 

Having learned the one-step approximator F̂, we can use the 

approximator to evaluate any path combined with a given 

measurement update function M(·, ·). In order to predict 

the covariance multiple timesteps into the future, we can 

use recursive prediction, in which the output of at time t+1 

is used as input at time t+2 and so on. The learning of F̂ will 

be relatively easier than that of F̂V
K or other more complicated 

functions. 

4.1 Feature selection: autoregressive time-series	
mode 

The input to the true covariance dynamics F is the current 

covariance and other statistical moments. In learning F̂, 

we select features in order to avoid overfitting and manage 

computational cost. However, learning with many features 

creates additional problems since many of the features are 

noisy or irrelevant; in other words, selecting the most relevant 

features has led to more efficient learning (Guyon and 

Elisseeff, 2003). We use the idea of state-space reconstruction 

(Box et al., 1994; Sauer et al., 1991), a standard methodology 
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for learning nonlinear dynamical systems. The methodology 

uses time-series observations of a system variable in order 

to learn the dynamics of the system. The time-series of the 

observed (specified) variable contains information of the 

unobserved (unspecified) variables; thus, learning the 

dynamics only through observed variables is possible. 

Following this idea, we used the time-series of the 

covariance as the only features for learning the covariance 

dynamics; the covariance dynamics were modeled with 

autoregressive (AR) time-series features (Box et al., 1994) so 

that 

8

that will be more accurate examples of the true covariance dynamics F. Still, the computation time for learning F̂ and the 

prediction time of using the learned model F̂ will stay similar, being independent of the accuracy of the training samples

[14].

In principle, we can learn a predictor of any function of the future covariance; for example, a direct mapping from the 

current covariance to the trace of the verification sub-block of the covariance after k timesteps with measurements taken 

along path p,

{ }ˆ ( ( ), ) trace ( ) .V f
k t t kF P V+≈ Σs p (17)

However, we argue that learning the one-step approximator F̂ is the best approach. One has to consider the fact that as the 

target function becomes more complicated, more training samples and sophisticated features may be required. While 

generating more training samples only requires more Monte-Carlo simulations, finding sophisticated features requires 

finding a proper transformation of the original features through many trial and error [15]. In addition, learning common 

functions which can be applied for different paths may be preferred. Having learned the one-step approximator F̂ , we can 

use it for the evaluation of any path combined with a given measurement update function ( )M ⋅,⋅ . In order to predict the 

covariance multiple timesteps into the future, we can use recursive prediction, in which the output of at time t+1 is used as 

input at time t+2 and so on. The learning of F̂ will be relatively easier than that of ˆ V
kF or other more complicated 

functions. 

4.1. Feature Selection: Autoregressive Time-series Mode

The input to the true covariance dynamics F is the current covariance and other statistical moments. In learning F̂ , we 

select features in order to avoid overfitting and manage computational cost. However, learning with many features creates 

additional problems since many of the features are noisy or are irrelevant; selecting the most relevant features have leads to 

more efficient learning [15]. We use the idea of state-space reconstruction [16,17], a standard methodology for learning 

nonlinear dynamical systems, in reasoning about the right features. The methodology uses the time-series observations of a

system variable in order to learn the dynamics of the system. The time-series of the observed (specified) variable contains 

the information of the unobserved (unspecified) variables, so that learning the dynamics through only observed variables is 

possible. 

Following this idea, we use the time-series of the covariance as the only features in learning the covariance dynamics; 

the covariance dynamics are modeled with autoregressive (AR) time-series features [17] so that 



1 ( 1)( ( )) ( )t t t d tF P F+ − + := Σ ≈ Σs (18)

where { }1 1 1 1 11t t d t t t d: + + +Σ = Σ ,Σ ,...,Σ and d is the degree, or the length, of time-series used as features. As the degree d

(18)

where Σt1:t1+d={Σt1, Σt1+1, ..., Σt1+d} and d is the degree, or the length, 

of time-series used as features. As the degree d increased, 

the resulting model was able to represent more complicated 

functions. We used cross-validation (Evgeniou et al., 2000) to 

choose d so that the model possessed sufficient complexity 

necessary for representing the covariance dynamics, but did 

not overfit to the training samples. 

There are two types of covariances at time t; the forecast 

(or predicted) covariance Σ f
t  and analysis (or updated) 

covariance Σa
t. We simply extend the definition of Σt1:t2 to 
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increases, the resulting model can represent more complicated functions. We use cross-validation [14] to choose d so that the 

model has the enough complexity to represent the covariance dynamics, but does not overfit to the training samples. 

There are two types of covariances at time t; the forecast (or predicted) covariance f
tΣ and analysis (or updated) 

covariance a
tΣ . We simply extend the definition of 

1 2t t:Σ to 

{ }1 2 1 1 1 1 2 21 1
f a f a f a

t t t t t t t t: + +Σ = Σ ,Σ ,Σ ,Σ . . . ,Σ ,Σ (19)

In this way, the effect of the covariance dynamics and the measurement update will be learned altogether. The learning 

approach is compared to the other methods in Figure 1.

4.1.1. Function decomposition

Because F̂ takes as input a series of d covariances each of size S Sn n× , and generates a future covariance of size S Sn n× ,

it is clearly a multidimensional function of the form 

ˆ : .S S S Sn n d n nF × × ×
   (20)

To simplify the learning problem, we decompose F̂ into ( )S Sn n× sub-functions 

( )
( 1) 1ˆ ( ( )) ( ) where and {1 }i j
t d t t si j i j i j i j NF

,
− + : +Σ , ≈ Σ , ≤ , ∈ ,... (21)

( ) ( )ˆˆ ifj i i j i jF F
, ,= ≠ (22)

The principle of the state-space construction states that this learning problem is solvable as the dynamics of a variable can be 

learned from the time-series observations of the variable. Besides the simplicity of learning, the decomposition takes into 

account the locality of the covariance dynamics that the system dynamics fi can be different for each cell i and that the 

statistics at each cell are affected by the distribution of the measurement network. 

4.1.2. Fast recursive prediction

In many physical systems, the spatially neighboring variables are strongly coupled, and thus their covariances are also 

expected to be coupled [3]. Instead of just using the AR features ( 1) ( )t d t i j− + :Σ , in learning ( )ˆ i j
F

, , we might also use the 

time-series of the spatially neighboring cells, ( 1) ( ( ) ( ))t d t L Li j− + :Σ ,N N , where 2( ) { }L i k L= || − | ≤N k i for some constant L

and i represents the location vector of cell i. However, the possible accuracy improvement is weighed down by the 

computational burden of the recursive prediction, that is needed for multi-step prediction. 

In recursive prediction, all features needed for the next step prediction must also be predicted from the current step. 

Suppose we want to predict a covariance entry 2 ( )t i j+Σ , from tΣ . In using neighboring features as input to the prediction, 

(19)

In this way, the effect of the covariance dynamics and the 

measurement update will be learned altogether. The learning 

approach is compared to the other methods in Fig. 1. 

4.1.1 Function decomposition

Because F̂ takes a series of d covariances as input in which 

each size is ns×ns, and generates a future covariance of size 

ns×ns, it is clearly a multidimensional function of the form 
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model has the enough complexity to represent the covariance dynamics, but does not overfit to the training samples. 

There are two types of covariances at time t; the forecast (or predicted) covariance f
tΣ and analysis (or updated) 

covariance a
tΣ . We simply extend the definition of 

1 2t t:Σ to 

{ }1 2 1 1 1 1 2 21 1
f a f a f a

t t t t t t t t: + +Σ = Σ ,Σ ,Σ ,Σ . . . ,Σ ,Σ (19)

In this way, the effect of the covariance dynamics and the measurement update will be learned altogether. The learning 

approach is compared to the other methods in Figure 1.

4.1.1. Function decomposition

Because F̂ takes as input a series of d covariances each of size S Sn n× , and generates a future covariance of size S Sn n× ,

it is clearly a multidimensional function of the form 

ˆ : .S S S Sn n d n nF × × ×
   (20)

To simplify the learning problem, we decompose F̂ into ( )S Sn n× sub-functions 

( )
( 1) 1ˆ ( ( )) ( ) where and {1 }i j
t d t t si j i j i j i j NF

,
− + : +Σ , ≈ Σ , ≤ , ∈ ,... (21)

( ) ( )ˆˆ ifj i i j i jF F
, ,= ≠ (22)
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learned from the time-series observations of the variable. Besides the simplicity of learning, the decomposition takes into 

account the locality of the covariance dynamics that the system dynamics fi can be different for each cell i and that the 
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In many physical systems, the spatially neighboring variables are strongly coupled, and thus their covariances are also 

expected to be coupled [3]. Instead of just using the AR features ( 1) ( )t d t i j− + :Σ , in learning ( )ˆ i j
F
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In recursive prediction, all features needed for the next step prediction must also be predicted from the current step. 

Suppose we want to predict a covariance entry 2 ( )t i j+Σ , from tΣ . In using neighboring features as input to the prediction, 

(20)

To simplify the learning problem, we decompose F̂ into 

O(ns×ns) sub-functions 

F̂(i,j)(Σ(t-d+1);t(i, j))≈ Σt+1(i, j) where i ≤ j and i, j{1, ...Ns} (21)
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it is clearly a multidimensional function of the form 

ˆ : .S S S Sn n d n nF × × ×
   (20)

To simplify the learning problem, we decompose F̂ into ( )S Sn n× sub-functions 
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( 1) 1ˆ ( ( )) ( ) where and {1 }i j
t d t t si j i j i j i j NF
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− + : +Σ , ≈ Σ , ≤ , ∈ ,... (21)
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The principle of the state-space construction states that this learning problem is solvable as the dynamics of a variable can be 

learned from the time-series observations of the variable. Besides the simplicity of learning, the decomposition takes into 

account the locality of the covariance dynamics that the system dynamics fi can be different for each cell i and that the 

statistics at each cell are affected by the distribution of the measurement network. 

4.1.2. Fast recursive prediction

In many physical systems, the spatially neighboring variables are strongly coupled, and thus their covariances are also 

expected to be coupled [3]. Instead of just using the AR features ( 1) ( )t d t i j− + :Σ , in learning ( )ˆ i j
F

, , we might also use the 

time-series of the spatially neighboring cells, ( 1) ( ( ) ( ))t d t L Li j− + :Σ ,N N , where 2( ) { }L i k L= || − | ≤N k i for some constant L

and i represents the location vector of cell i. However, the possible accuracy improvement is weighed down by the 

computational burden of the recursive prediction, that is needed for multi-step prediction. 

In recursive prediction, all features needed for the next step prediction must also be predicted from the current step. 

Suppose we want to predict a covariance entry 2 ( )t i j+Σ , from tΣ . In using neighboring features as input to the prediction, 

(22)

The principle of the state-space construction states that this 

learning problem is solvable as the dynamics of a variable can 

be learned from the time-series observations of the variable. 

In addition to the simplicity of learning, decomposition takes 

into account the locality of the covariance dynamics that the 

system dynamics fi can be different for each cell i and that the 

statistics at each cell are affected by the distribution of the 

measurement network.

4.1.2. Fast recursive prediction

In many physical systems, the spatially neighboring 

variables are strongly coupled, and thus their covariances are 

also expected to be coupled (Furrer and Bengtsson, 2007). 

Instead of just using the AR features Σ(t-d+1);t(i, j) in learning 

F̂ (i,j), we might also use the time-series of the spatially 

neighboring cells, Σ(t-d+1):t(NL(i), NL( j)), where NL(i)={k|k-
i|2≤L} for some constant L and i represents the location vector 

of cell i. However, possible accuracy improvement is negated 

by the computational burden of the recursive prediction that 

is needed for multi-step prediction. 

In recursive prediction, all features needed for the next 

step prediction must also be predicted from the current step. 

Suppose we want to predict a covariance entry Σt+2(i, j) from 

Σt. In using neighboring features as input to the prediction, 

we must also predict the sub-block covariance Σ̂t+1(NL(i), 
NL( j)). The entries of Σ̂t+1(NL(i), NL( j)) have to be predicted 

using their own spatial neighbors from Σt. It is easy to see 

that the number of the entries to be predicted increases 

with the number of steps in the prediction; the prediction of 

Σt+3(i, j) requires Σ̂t+2(NL(i), NL( j)) and so on. With the use of 

AR features alone, we only have to know the past values of 

one covariance entry to predict the next value of the entry. 

(Editor’s Note: Very well written paragraph)

4.2 Model selection: parametric model learning

In this work, we decided to learn a parametric model of the 

covariance dynamics, representing F̂ (i,j) by a linear function 

of the input x=Σt-d+1:t(i, j) 

Σt+1(i, j)≈F̂ (i,j)(x)=β0
(i, j)+β1

(i, j)Σt-d+1(i, j)+β2
(i, j)Σt-d+2(i, j)

+...+βd
(i, j)Σt(i, j)

(23)

where β(i, j)=Δ {β0
(i, j), β1

(i, j), ..., βd
(i, j)} are the coefficients to be 

determined by the training process. The linear function in 

19

Figure 1. The block diagram of covariance dynamics approximation scheme in filtering algorithms and the time-series 

learning approach.

Algorithm 1. Path Selection Algorithm

Input: Initial (analysis) covariance 0
aΣ and learned models F̂

for all paths kp do

Get the sub-block covariance 0 ( ), { ,| , ( )}a k k
LR R VΣ p N p 

for all locations k
tl ∈p , {1, , }ft T∈ … do

Propagate elements of 1( )a
t R−Σ according to the learned models ˆ ( , ), ( , )F i j i j R∈

Perform (localized) measurement update at location tl and get ( )a
t RΣ

end for

Propagate elements of ( )
fT VΣ for more steps to get ( ),

vT f vV T TΣ ≤

end for

Return the path p with minimum trace of ( )
vT VΣ

Figure 2. Algorithm 1: Path Selection Algorithm

Fig. 1. �The block diagram of the covariance dynamics approximation 
scheme in filtering algorithms and the time-series learning ap-
proach.
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Eq. (23) models nonlinear or more complicated functions of 

the original input x by incorporating nonlinear functions of 

the input features x. For instance, we can transform x=(x1, x2, 

... xm) to x´=(x1, x1
2, x2, x2

2, ... xm, x2
m) by adding squared terms 

of original features; this is called basis expansion. Then, a 

linear function of x´ will be a nonlinear or quadratic function 

of original feature x. Basis expansion and the use of higher 

degree time-series features are the two strategies that we 

employed to learn the nonlinear covariance dynamics. 

The choice of learning a parametric model is to enable 

faster prediction during the operation. Once the coefficients 

β(i, j) are found through a training process, the computation 

time of a parametric model is linear in the number of features. 

This is contrasted to popular non-parametric models such as 

support vector machines or Gaussian processes, in which 

prediction time is proportional to the number of training 

samples (Evgeniou et al., 2000). We want to learn a global 

model that is valid for the entire sample space enabling the 

use of the model in operation without frequent updates. To 

learn a global model, we expected to use as many training 

samples as possible, and the initial experiments showed 

that the learned covariance dynamics was only valid locally 

if trained with a small number of training samples (Park, 

2008). The use of nonparametric models may be prohibitive 

in this case.

4.2.1 Regularized least squares regression

Learning of F̂ (i,j) entails finding the coefficients β(i, j) 

through minimizing some loss function of prediction errors, 

ek= F̂ (i,j)(xk)-yk, k∈{1, ..., n}. We used regularization to learn 

F̂ (i,j), which did not overfit to the training samples (Evgeniou 

et al., 2000). Overfitting models may offer zero prediction 

error by perfectly fitting the training samples; however, such 

a procedure poorly predicts a new example x*, where x*≠xk, 

k∈{1, ..., n}.

Regularization provides extra information from domain 

knowledge by placing a prior over the regression coefficients 

β; for example, the L2-norm of the coefficients |β |2 is preferred 

to be small, as larger |β |2 indicating that the learned function 

is less smooth and may be the result of overfitting the training 

samples. The regularized least squares (RLS) algorithm 

minimizes the sum of the squared-error of the training 

samples and a regularization penalty,

11

predicting a new example ∗x , where {1 ..., }k k n∗ ≠ , ∈ ,x x .

Regularization provides extra information from domain knowledge by placing a prior over the regression coefficients 

β , for example, the L2-norm of the coefficients 2β| | is preferred to be small, as larger 2β| | means that the learned 

function is less smooth and may be the result of overfitting the training samples. The Regularized Least Squares (RLS) 

algorithm minimizes the sum of the squared-error of the training samples and a regularization penalty, 

2ˆ arg min || ( ) || TXββ β λβ β= − +y . (24)

where λ is regularization parameter which controls the contribution of the L2-norm of regression coefficients β to the 

total loss function; a larger value of λ encourages smaller 2β| | . To minimize (24), we set the derivative of (24) with 

respect to β to 0, and get 

T 1 Tˆ ( )X X I Xβ λ −= + .y (25)

We find ( )ˆ i j
β

, for each approximator ( )ˆ i j
F

, using the RLS algorithm, while ( )i jλ , , the degree of time-series d,

and the proper basis expansion are found by cross-validation. For instance, k-fold cross validation divides the training 

samples into k sets and the training process is repeated for k times. At each trial, only k-1 sets are used for the training and 

the other one is used for calculating the prediction error. The prediction error is averaged for the k trials. The model with the 

lowest average prediction error usually gives the best model which does not overfit to the specific training samples [14].

There are ( )S Sn n× models to be learned and the total training time is 2 2( )Sn n× where n is the number of training 

samples. The training is performed once for all and this can be done offline, while UAVs use the learned models with fast 

prediction time during the operation. 

4.3. Path selection with learned covariance dynamics

Once we have learned the models F̂ , we can predict the uncertainty of the system after taking a series of observations, 

using the learned models and the measurement update function. Specifically, we want the prediction for a region of interest, 

such as a verification region. Let R represent the cells that corresponding to the region, then the number of system variables 

contained in those cells, i.e., |R|, is typically significant smaller than the number of state variables, nS. The computational 

complexity of calculating the sub-block forecast covariance ( )t RΣ is given in Table 1. It is shown that only the AR 

prediction has the computation time that is independent of the system size nS. The nonlinear dynamics integration in both 

methods, and the size of ensemble that should grow large for estimating a large system for the full propagation method, are 

the reasons for the computation time that scales with the system size. 

The full-propagation needs to integrate each ensemble member as in Eq. (7). Each ensemble represents nS state 

variables, and the integration of one ensemble member takes ( )int SC n where Cint is the integration cost of a variable using 

(24)

where λ is regularization parameter which controls the 

contribution of the L2-norm of regression coefficients β  to 

the total loss function; a larger value of λ encourages smaller 

|β |2. To minimize Eq. (24), we set the derivative of Eq. (24) 

with respect to β  to 0, and get
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We find β̂(i, j) for each approximator F̂ (i,j) using the RLS 

algorithm, while λ(i, j), the degree of the time-series d, and 

the proper basis expansion are found by cross-validation. 

For instance, k-fold cross validation divides the training 

samples into k sets and the training process is repeated for 

k times. At each trial, only k-1 sets are used for the training 

and the other one is used for calculating the prediction error. 

The prediction error is averaged for the k trials. The model 

with the lowest average prediction error usually provides 

the best model that does not overfit to the specific training 

samples (Evgeniou et al., 2000). There are O(ns×ns) models 

to be learned and the total training time is O(n2
s×n2) where 

n is the number of training samples. Training is performed 

permanently and can be done offline, while UAVs use the 

learned models with fast prediction time during operation. 

4.3 Path selection with learned covariance dynam-
ics

Once we have learned the models F̂, we can predict the 

uncertainty of the system after taking a series of observations, 

using the learned models and the measurement update 

function. Specifically, we want the prediction for a region 

of interest, such as a verification region. Let R represent 

the cells that correspond to the region, then the number of 

system variables contained in those cells, i.e., |R|, is typically 

significantly smaller than the number of state variables, nS. 

The computational complexity of calculating the sub-block 

forecast covariance Σt(R) is given in Table 1. It is shown that 

only the AR prediction has a computation time independent 

of the system size nS. For the full propagation method, the 

size of the ensemble should grow with the number of states 

to achieve sufficient level of estimation performance. 

Full-propagation needs to integrate each ensemble 

member, as in Eq. (7). Each ensemble represents nS state 

Table 1. �The computational complexity of the algorithms for the one-
step prediction (and calculating the forecast covariance). Cint 
is the nontrivial cost of nonlinear dynamics integration of 
one state variable; nE is the ensemble size; nS is the number 
of state variables in the system. nE has to be Ω(nS

2)(Furrer and 
Bengtsson, 2007). |R| is the size of the region of interest. d is 
the size of the features for autoregressive (AR) models. d≪
nE, |R|≪nS for many path planning cases so that AR prediction 
becomes significantly faster

Complexity

Full propagation Ω(CintnEnS+nE|R|2)

Linearization O(CintnS
2)

AR prediction O(d|R|2)
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variables, and the integration of one ensemble member 

takes O(Cintns) where Cint is the integration cost of a variable 

using certain methods, such as RK4 method. Furthermore, a 

larger system should be estimated with a larger ensemble; nE 

has to be Ω(n2
S)(Furrer and Bengtsson, 2007). Therefore, the 

total computation time is Ω(CintnEnS). The calculation of the 

covariance matrix incurs additional Ω(nE|R|2) computational 

effort because this calculation involves computing inner 

products of nE-dimensional vector for |R|2 times. The 

linearization calculates the Jacobian matrix around the 

current mean estimate μt-1 and applies it to Σt-1(R), which 

yields the computation time O(Cintn2
S). 

However, the learned model calculates each entry of Σt(R) 

using the time-series Σt-d:t-1(R). An entry of the predicted 

covariance matrix is a linear sum of d features, so the 

computation time is O(d|R|2) as there are |R|2 entries. The 

computation time is independent of nS and this results in 

a great computation reduction given |R|≪nS. The degree of 

time-series d represents the complexity of the AR model, 

which may grow as the complexity of the system dynamics 

grows. However, the system size nS does not have a direct 

impact on d. Also, d is independent of nE; a large ensemble 

set can be used for better estimation of a system, but this will 

only provide better training samples of the true covariance 

dynamics. 

For the measurement update function, we can use a 

localized measurement update for further computation 

reduction, which ignores spurious correlations between two 

variables that are physically far from each other (Houtekamer 

and Mitchell, 2001); for a measurement at location p, only 

the physical neighbors NL(p) are updated where L represents 

the maximum distance that an observation can affect. The 

use of the covariance dynamics model and the localized 

measurement update function facilitates path planning 

without maintaining the full covariance matrix. Specifically, 

we only need the sub-block covariance of the cells in the 

verification (or local) region V, on path p, and the local 

neighbors of p denoted by NL(p). Given the uncertainty at 

a future time, problems regarding path planning become 

trivial in regards to choosing the path providing maximum 

uncertainty reduction, as in Algorithm 1 (Fig. 2). 

5. Numerical Experiments

In this work, we used the Lorenz-2003 weather model 

(Lorenz, 2005) for all experiments and for method validation. 

The Lorenz models are known for their nonlinear and chaotic 

behavior, and have been used extensively in the validation of 

adaptive observation strategies for weather prediction (Choi 

and How, 2010a; Leutbecher, 2003; Lorenz and Emanuel, 

1998). 

5.1 Lorenz-2003 model

The Lorenz-2003 model (Choi and How, 2010b) is an 

extended model of the well-known Lorenz-95 model (Lorenz 

and Emanuel, 1998) that addresses multi-scale features of 

the weather dynamics in addition to the basic aspects of the 

weather motion such as energy dissipation, advection, and 

external forcing. We used the two-dimensional Lorenz-2003 

model, representing the mid-latitude region (20-70 deg) of 

the northern hemisphere. There are Lon=36α longitudinal and 

Lat=8β+1 latitudinal grids in Lorenz models. We used α=β=2; 

resulting in 72 × 17 = 1,224 state variables. The length-scale of 

the Lorenz models was proportional to the inverse of α and β 

in each direction: the grid size for α=β=2 amounts to 347 km 

× 347 km. The time-scale of the Lorenz models was such that 

1 time unit was equivalent to 5 days in real time; the duration 

of 0.01 time units (or 1.2 hours) was equivalent to 1 (discrete) 

timestep in the further discussions. 

We used a two-dimensional index (i, j) in which i denotes 

the West-to-East grid index and j denotes the South-to-

North grid index; s(i, j) is the state variable of (i, j)-th grid. The 

dynamic equations governing the state variables is 

13

northern hemisphere. There are 36onL α= longitudinal and 8 1atL β= + latitudinal grids in Lorenz models. We use 

2α β= = ; then, there are 72× 17=1224 state variables. The length-scale of the Lorenz models are proportional to the 

inverse of α and β in each direction: the grid size for 2α β= = amounts to 347 km × 347 km. The time-scale of 

the Lorenz models are such that 1 time units are equivalent to 5 days in real time; the duration of 0.01 time units (or 1.2 hrs) 

is equivalent to 1 (discrete) timestep in the further discussions. 

We use a two-dimensional index (i,j) where i denotes the West-to-East grid index and j denotes the South-to-North 

grid index; ( )i js , is the state variable of (i,j)-th grid. The dynamic equations governing the state variables is 
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where 1 1
( ) ( )1 1

(1 / 3) ( ) (1 / 3) ( )i j i jk k
s i k j s i j kξ η+ +

, ,=− =−
= + , , = , +∑ ∑ . The equations contain quadratic, linear, and constant 

terms representing advection, dissipation, and external forcing. The dynamics in (26) are subject to cyclic boundary 

conditions in longitudinal direction: ( 72 ) ( 72 ) ( )i j i j i js s s+ , − , ,= = and a constant advection condition ( 0) ( 1) 3i is s, ,−= = = ,

( 18) ( 18) 0i is s, ,= = = is applied in the latitudinal direction. 

5.2. Covariance Dynamics Learning Results

Table 2 shows the prediction performance of the learned covariance dynamics using different types of features, while the 

RLS algorithm was used for all of them. The one-step prediction of the covariance using the learned models was compared 

to that of using the true covariance dynamics from Monte-Carlo simulations. The metric of the prediction performance is the 

Normalized Mean Squared Error (NMSE), which is the mean squared error (MSE) normalized by the total variance of the 

predicted variable. The MSE can be small, even with poor learned models, when the predicted variable has very small 

variance; The NMSE does not have this problem. The models are trained with a set of training samples and tested on a 

separate test set, to measure how well the learned models generalize to the new samples. The values in Table 2 show the 

prediction errors on the test set. 

The AR features with different degree, the quadratic and cubic basis expansions, and the spatial neighbors features 

were compared. It is clear from the result that the covariance dynamics was better modeled with more complicated models 

using a higher-degree AR features and the basis expansion of the original AR features. The spatial neighbors features also 

helped the prediction performance, but were less useful than the basis expansion of the AR features. It also has the 

disadvantage of the slow recursive prediction. Note that the number of features increases with the basis expansion; if the 

original features is the AR features of degree d, the full quadratic expansion increases the number of features to 2( )d and 

(26)

Algorithm 1. Path selection algorithm

Input: Initial (analysis) covariance Σa
0 and learned models 

F̂
for all paths pk do 

Get the sub-block covariance Σa
0(R), R=Δ U{V,|pk, NL(pk)}

for all locations lt∈pk, t∈{1, ..., Tf} do 

   �Propagate elements of Σa
t-1(R) according to the learned 

models F̂(i, j), (i, j)∈R

   �Perform (localized) measurement update at location lt 

and get Σa
t (R)

end for

Propagate elements of ΣTf(V) for more steps to get ΣTv(V), 

Tf≤Tv

end for

Return the path p* with minimum trace of ΣTv(V)

Fig. 2. Algorithm 1: Path selection algorithm.
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where ξ(i, j)=Σ(1/3)Σ+1
k=−1s(i+k, j), η(i, j)=(1/3)Σ+1

k=−1s(i, j+k). 

The equations contain quadratic, linear, and constant terms 

representing advection, dissipation, and external forcing. 

The dynamics in Eq. (26) are subject to cyclic boundary 

conditions in the longitudinal direction: s(i+72, j)=s(i-72, j)=s(i, 
j) and a constant advection condition s(i 0)=…=s(i, −1)=3, 

s(i, 18)=…=s(i, 18)=0 is applied in the latitudinal direction. 

5.2 Covariance dynamics learning results

Table 2 shows the prediction performance of the learned 

covariance dynamics using different features, while the RLS 

algorithm was used for all features. The one-step prediction 

of covariance using the learned models was compared to 

that of using the true covariance dynamics from Monte-Carlo 

simulations. The metric used for the prediction performance 

was the normalized mean squared error (NMSE), which is 

the MSE normalized by the total variance of the predicted 

variable. The MSE can be small, even with poor learned 

models, when the predicted variable exhibited very small 

variance. The NMSE does not have this problem. The models 

were trained with a set of training samples and tested on a 

separate test set in order to measure how well the learned 

models generalized to the new samples. The values in Table 2 

show the prediction errors on the test set. 

The AR features containing different degrees, the quadratic 

and cubic basis expansions, and the spatial neighbors 

features were compared. Based on the comparison, we 

clearly observed that the covariance dynamics was better 

modeled with more complicated models using higher-

degree AR features and the basis expansion of the original 

AR features. The spatial neighbor features also helped 

prediction performance, but were less useful than the basis 

expansion of the AR features. It also has the disadvantage 

of the slow recursive prediction. Note that the number of 

features increased with the basis expansion; if the original 

features were AR features with degree d, the full quadratic 

expansion increases the number of features to O(d2) and the 

full cubic expansion increases it to O(d3). For instance, the 

models with full quadratic expansion can be 20 times slower 

than the models with original features when d = 20. Thus, we 

did not use the full basis expansion and added only a few 

interaction terms to the model. 

In accordance with the results, we chose d = 20 as the 

degree of the AR features in the final models. The use of a 

higher value of d, d > 20, resulted in overfitting. The prediction 

error (test error) started to grow, while the prediction time 

slowed down as the value of d increased. The value of d is 

linear to the number of features used in the model. However, 

it is possible to see the prediction error reduction with higher 

values of d and with more training samples. Again, the specific 

choice of d and the proper basis expansion must be selected 

by a model selection procedure, such as cross-validation or 

using a separate test set, and we chose d = 20 which had the 

best test error. We used the quadratic basis expansion for its 

similar performance to the cubic basis expansion. However, 

in contrast to the cubic basis expansion, the quadratic basis 

expansion generates faster models.

We compared the accuracy of the learned covariance 

with other approximation methods and the true covariance 

dynamics from Monte-Carlo simulations. The partial 

propagation uses only a random fraction of the original 

Monte-Carlo samples, which gives a constant factor speed-

up as the prediction time is linear to the number of the 

Monte-Carlo samples; if we use 10% of the samples, we get 

a speed-up of about 10 times that of the original simulation. 

Note that, however, the computation time of the partial 

propagation scales with the size of the dynamical system, 

unlike the learned dynamics case, as in Table 1.

The prediction of the trace of the sub-block covariance 

Σ(V) for a same path is tested in  Table  3, where V is an 11 

× 11 verification region. The verification time was 20 steps 

after the forecast time and a sequence of 11 measurements 

was taken before the forecast. The predictions using the 

learned covariance dynamics were significantly better than 

those from the linearized model. The partial propagation 

also performed worse than the learned dynamics in terms 

Table 2. �Time-series regression result (NMSE) (3,200 training samples and 800 test samples); the error bars represent ±2σ

Degree of time-series (d )

Model 5 10 20

AR features (D = 0)

RLS (linear) 2.8×10-3 ± 4.6×10-3 3.2×10-6 ± 1.3×10-5 5.4×10-7 ± 2.6×10-6

RLS (quadratic) 2.8×10-3 ± 5.1×10-3 9.2×10-7 ± 4.0×10-6 2.3×10-7 ± 1.1×10-6

RLS (cubic) 3.0×10-3 ± 5.9×10-3 4.6×10-7 ± 2.0×10-6 2.3×10-7 ± 9.1×10-7

AR + spatial neighbors features (D = 1)

RLS (original) 2.7×10-3 ± 4.6×10-3 3.6×10-6 ± 1.1×10-5 4.2×10-7 ± 2.4×10-6

AR: autoregressive, RLS: regularized least squares.
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of mean prediction error, especially with a bigger original 

ensemble, but had smaller prediction error variance. 

The path selection requires the accurate relative ranking 

of the candidate paths. For that purpose, both the prediction 

error (bias) and the variance should be small. Roughly, 

the bias may cause consistent error in the ranking and the 

variance causes the occasional error in the ranking. We show 

the path selection result in the next section.

5.3 Path planning results

Given the ability to predict the change in covariance of 

the EnKF efficiently, we can now use the learned function to 

identify sensor trajectories that maximize information gain 

for some region of interest. We assume that a UAV moves from 

one cell to another of the eight neighboring cells at certain 

timesteps, taking a measurement at every cell it visits. The 

system also has a fixed observation network, where about 10 

percent of the system is covered by the routine observation 

network that provides measurements in a regular interval 

(5 timesteps for this work). We tested two path planning 

scenarios: adaptive targeting and local path planning. The 

measure of information gain is the change in the trace of the 

R sub-block of the covariance Σ(R). R is either a local region 

or a verification region depending on the planning problem. 

A sample scenario of the local path planning is given in 

Fig. 3. We considered the case where R is a 5 × 5 local region 

and the planning horizon is 5. Given the initial state of the 

EnKF, an agent plans to observe a sequence of 5 locations, 

one for every timestep, before arriving at the end point. We 

fixed the start point and used three choices for the end point, 

thus there were a total of 51 paths in this case. The best and 

worst paths are illustrated in Fig. 3. In terms of information 

gain, the best path decreased the trace of the covariance of 

20

Figure 3. Original state of the EnKF at planning time. The best path and worst path are shown. The rectangle represent the 

local region of interest that we plan to minimize the uncertainty (trace of covariance).

Figure 4. Local Planning Result: accumulated difference of trace between AR(20) model prediction, greedy and linearization 

method of 5-timestep local planning in Lorenz-2003 model.

Figure 5. Verification Region Targeting Result: accumulated difference of trace (11-timestep planning and 20-timestep 

forecast) in Lorenz-2003 model. 

Fig. 4. �Local planning result: accumulated difference of trace between 
autoregressive (20) model prediction, greedy and linearization 
method of 5-timestep local planning in Lorenz-2003 model.

20

Figure 3. Original state of the EnKF at planning time. The best path and worst path are shown. The rectangle represent the 

local region of interest that we plan to minimize the uncertainty (trace of covariance).

Figure 4. Local Planning Result: accumulated difference of trace between AR(20) model prediction, greedy and linearization 

method of 5-timestep local planning in Lorenz-2003 model.

Figure 5. Verification Region Targeting Result: accumulated difference of trace (11-timestep planning and 20-timestep 

forecast) in Lorenz-2003 model. 
Fig. 5. �Verification region targeting result: accumulated difference 

of trace (11-timestep planning and 20-timestep forecast) in 
Lorenz-2003 model. 

20

Figure 3. Original state of the EnKF at planning time. The best path and worst path are shown. The rectangle represent the 

local region of interest that we plan to minimize the uncertainty (trace of covariance).

Figure 4. Local Planning Result: accumulated difference of trace between AR(20) model prediction, greedy and linearization 

method of 5-timestep local planning in Lorenz-2003 model.

Figure 5. Verification Region Targeting Result: accumulated difference of trace (11-timestep planning and 20-timestep 

forecast) in Lorenz-2003 model. 

Fig. 3. �Original state of the ensemble Kalman filter at planning time. 
The best path and worst path are shown. The rectangle repre-
sents the local region of interest that we plan to minimize the 
uncertainty (trace of covariance).

Table 3. �The prediction result (mean absolute error) of the trace of 
posterior distribution after path executions (20 step forecast 
after 11 step planning)

The size of ensemble

1,224 6,120

Learned 0.0669 ± 0.0657 0.3032 ± 0.0882

Linearization 0.1502 ± 0.1439 0.5801 ± 0.1483

Partial (10%) propagation 0.0718 ± 0.0450 0.4834 ± 0.0531

Table 4. �Average computation time for path planning using different 
methods: A total of 51 paths were evaluated for the informa-
tive forecasting of Lorenz-2003 model using (a) full propaga-
tion of ensemble Kalman filter with nE = 1,224, (b) lineariza-
tion, and (c) AR prediction. (Pentium-4 3.0 Ghz Dual Core was 
used)

Full propagation 1,984.48 s

Linearization 21.79 s

AR(20) prediction 6.81 s

AR: autoregressive.
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the region by 15% while the worst path actually increased 

the trace 1.5%. The average reduction of the uncertainty was 

8.3% with standard deviation of 4.6% for 51 paths. 

Under the same scenario, we tested the path selection 

ability of different strategies. The baseline greedy strategy 

is to choose the path with maximum uncertainty reduction 

in the current covariance using the measurements; it does 

not propagate the uncertainty in time and but performs 

measurement updates on the current covariance. The results 

of local path selection is shown in Fig.  4. The AR strategy 

makes almost no mistakes in this case, and the greedy strategy 

performs similarly to the linearization method. The actual 

computation time in the experiment is shown in Table 4. The 

AR prediction was much faster than full propagation and was 

also faster than linearization. This computational advantage 

was also theoretically proven with a lower time complexity 

of the algorithm as in Table 1. The computational advantage 

will be even greater in larger dynamical systems with bigger 

Ns than the Lorenz-2003 model. 

The other scenario was the targeting problem in the 11 × 11 

region near the verification region in Fig. 1, and the reduction 

of the trace of 20-step forecast (the verification time was 20 

steps after the forecast time) was evaluated. There are about 

8,000 possible paths, but we randomly selected 100 paths for 

our experiments; we may not have chosen the true best path, 

as it may be one of the other 7,900 paths, but the relative 

performance of the strategies should not be affected by this 

random selection. The result of the path selection using 

different strategies is shown in Fig. 5. The prediction result 

of the learned covariance dynamics enabled the selection of 

the path close to the true best path of the EnKF. 

6. Conclusions

This paper presented a learning method that improves 

computational efficiency in the optimal design of sensor 

trajectories in a large-scale dynamic environment. A time-

series regression method based on autoregressive features 

and a regularized least-squares algorithm was proposed 

to learn a predictive covariance dynamics model. It was 

empirically verified that the proposed learning mechanism 

successfully approximated the covariance dynamics and 

significantly reduced the computational cost in calculating 

the information gain for each candidate measurement path. 

In addition, numerical results with a simplified weather 

forecasting example suggested that path planning based 

on the presented learning method outperformed other 

approximate planning schemes such as linearization and 

partial Monte-Carlo propagation. 
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