DOI QR코드

DOI QR Code

Fault Detection Method for Multivariate Process using Mahalanobis Distance and ICA

마할라노비스 거리와 독립성분분석을 이용한 다변량 공정 고장탐지 방법에 관한 연구

  • Jung, Seunghwan (Department of Electrical and Electronics Engineering, Pusan National University) ;
  • Kim, Sungshin (Department of Electrical Engineering, Pusan National University)
  • Received : 2021.01.29
  • Accepted : 2021.02.04
  • Published : 2021.02.28

Abstract

Multivariate processes, such as chemical and mechanical process, power plants are operated in a state where several facilities are complexly connected, the fault of a particular system can also have fatal consequences for the entire process. In addition, since process data is measured in an unstable environment, outlier is likely to be include in the data. Therefore, monitoring technology is essential, which can remove outlier from measured data and detect failures in advance. In this paper, data obtained from dynamic and multivariate process models was used to detect fault in various type of processes. The dynamic process is a simulation of a process with autoregressive property, and the multivariate process is a model that describes a situation when a specific sensor fault. Mahalanobis distance was used to remove outlier contained in the data generated by dynamic process model and multivariate process model, and fault detection was performed using ICA. For comparison, we compared performance with and a conventional single ICA method. The proposed fault detection method improves performance by 0.84%p for bias data and 6.82%p for drift data in the dynamic process. In the case of the multivariate process, the performance was improves by 3.78%p, therefore, the proposed method showed better fault detection performance.

화학공정, 기계공정, 발전소와 같은 다변량 공정은 여러 설비들이 복잡하게 연결되어 운영되기 때문에 특정 시스템에 고장이 발생하면 전체 공정에 치명적인 영향을 미칠 수 있다. 또한, 공정 데이터는 불안정한 환경에서 계측되므로, 데이터에 이상치가 포함될 가능성이 크다. 따라서 계측된 데이터의 이상치를 제거하고 시스템의 고장을 사전에 탐지할 수 있는 모니터링 기술이 필수적이다. 본 논문에서는 여러 종류의 공정에서 고장탐지를 수행하기 위해 다이나믹 공정과 다변량 공정 모델에서 생성된 데이터를 이용하였다. 다이나믹 공정은 자기회귀 특성을 가지는 공정을 모델링한 것이고 다변량 공정은 특정 센서의 고장이 발생했을 때 상황을 묘사한 공정이다. 본 논문에서는 두 공정에서 생성된 데이터에 마할라노비스 거리를 이용하여 데이터에 포함된 이상치를 제거한 후, 독립성분분석을 적용하여 고장탐지를 수행하였다. 제안된 방법의 성능 비교를 위해 기존의 단일모델 ICA와 성능을 비교하였다. 실험결과, 제안된 방법이 기존의 ICA 보다 다이나믹 공정의 바이어스 데이터의 경우에 0.84%p, 드리프트 데이터의 경우 6.82%p 성능이 개선되었다. 다변량 공정의 경우 3.78%p 성능이 개선되었으므로, 제안된 방법이 우수한 고장탐지 성능을 보였다.

Keywords

References

  1. J. Yu, J. Jang, J. Yoo, and S. Kim, "Fault detection method for steam boiler tube using Mahalanobis distance," Journal of Korean Institute of Intelligent Systems, vol. 26, pp. 246-252, 2016. https://doi.org/10.5391/JKIIS.2016.26.3.246
  2. Y. H. Lee, K. J. KIM, S. I. Lee, and D. J. Kim, "Seq2Seq model-based prognostics and health management of robot arm," The Journal of Korean Institute of Information, Electronics, and Communication Technology, vol. 12, no. 3, pp. 242-250, 2019.
  3. J. M. Lee, C. K. Yoo, and I. B. Lee, "Statistical monitoring of dynamic processes based on dynamic independent component analysis," Chemical Engineering Science, vol. 59, pp. 2995-3006, Jul. 2004. https://doi.org/10.1016/j.ces.2004.04.031
  4. W. Ku, R. H. Storer, and C. Georgakis, "Disturbance detection and isolation by dynamic principal component analysis," Chemometrics and Intelligent Laboratory Systems, vol. 30, pp. 179-196, 1995. https://doi.org/10.1016/0169-7439(95)00076-3
  5. M. Zvokelj, S. Zupan, and I. Prebil, "EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis," Journal of Sound and Vibration, vol. 370, pp. 394-423, 2016. https://doi.org/10.1016/j.jsv.2016.01.046
  6. A. Ajami, and M. Daneshvar "Data driven approach for fault detection and diagnosis of turbine in thermal power plant using Independent Component Analysis(ICA)," International Journal of Electrical Power & Energy, vol. 43, pp. 728-735, 2012. https://doi.org/10.1016/j.ijepes.2012.06.022
  7. M. Liu, Y. Liao and X. Li, "Data-drven fault detection of three-tank system applying MWAT-ICA," Journal of Shanghai Jiaotong University (Science), vol. 25, no. 5, pp. 659-664, 2000.
  8. S. Zhang, and C. Zhao, "Hybrid independent component analysis (H-ICA) with simultaneous analysis of high-order and second-order statistics for industrial process monitoring," Chemometrics and Intelligent Laboratory Systems, vol. 185, no. 15, pp. 47-58, 2019. https://doi.org/10.1016/j.chemolab.2018.12.014
  9. A. Hyvarinen, "Fast and robust fixed-point algorithm for independent component analysis," IEEE Trans. Neural Networks, vol. 10, no. 3, pp. 626-634, 1999. https://doi.org/10.1109/72.761722
  10. A. D. Back, and A. S. Weigend, "A first application of independent component analysis to extracting structure from stock returns," International Journal of Neural Systems, vol. 8, no. 4, pp. 473-484, 1997. https://doi.org/10.1142/S0129065797000458
  11. A. Hyvarinen, "Survey on independent component analysis," Neural computing surveys, vol. 2, pp. 94-128, 1999.
  12. J. M. Lee, C. K. Yoo, and I. B. Lee, "Statistical process monitoring with independent component analysis," Journal of Process Control, vol. 14, no. 5, pp. 467-485, 2003. https://doi.org/10.1016/j.jprocont.2003.09.004
  13. C.F. Alcala, and S. J. Qin, "Analysis and generalization of fault diagnosis methods for process monitoring," Journal of Process Control, vol. 21, no. 3, pp. 322-330, 2011. https://doi.org/10.1016/j.jprocont.2010.10.005