• Title/Summary/Keyword: autophagy-related

Search Result 173, Processing Time 0.034 seconds

Enhancing the Anti-cancer Activity of Non-steroidal Anti-inflammatory Drug and Down-regulation of Cancer Stemness-related Markers in Human Cancer Cells by DAPT and MHY2245 (DAPT 및 MHY2245의 비스테로이드소염제(NSAID)의 항암 활성 증강 및 종양줄기세포관련 표지자 발현 감소 활성에 대한 분자적 기전)

  • Moon, Hyun-Jung;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.210-221
    • /
    • 2022
  • This study investigated the mechanisms underlying the anti-cancer effects of non-steroidal anti-inflammatory drugs (NSAIDs) in human cancer cells in combination with either N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor, or MHY2245, a new synthetic sirtuin 1 inhibitor. The results showed both DAPT and MHY2245 as novel chemosensitizers of human colon cancer KM12 and human hepatocellular carcinoma SNU475 cells to NSAIDs involving celecoxib and 2, 5-dimethyl celecoxib. The NSAID-induced cytotoxicity of these cells was significantly increased by DAPT and MHY2245 in a cyclooxygenase-2 independent manner. In addition, DAPT and MHY2245 reduced levels of p62, Notch1 intracellular domain, and multiple cancer stemness (CS)-related markers including Notch1, CD44, CD133, octamer-binding transcription factor 4, mutated p53 and c-Myc. However, the level of activating transcription factor 4 (ATF4) was enhanced, probably indicating the down-regulation of multiple CS-related markers by DAPT or MHY2245-mediated autophagy induction. Moreover, the NSAID-mediated reduction of p62/nuclear factor erythroid-derived 2-like 2 and CS-related marker proteins and the up-regulation of C/EBP homologous protein (CHOP)/ATF4 were accelerated by DAPT and MHY2245. As such, the combination of NSAID and either DAPT or MHY2245 resulted in higher cytotoxicity than NSAID alone by accelerating the down-regulation of multiple CS-related markers and PARP activation, indicating that both inhibitors promote NSAID-mediated autophagic cell death, possibly through the CHOP/ATF4 pathway. In conclusion, either combination strategy may be useful for the effective treatment of human cancer cells expressing CS-related markers.

Anti-proliferative Effects of Celastrol, A Quinine Methide Triterpene Extracted from the Perennial Vine Tripterygium wilfordii, on Obesity-related Cancers (미역줄나무 뿌리 추출물인 셀라스트롤의 비만관련 암증식 억제효과)

  • Park, Sunmi;Moon, Hyun-Seuk
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.1
    • /
    • pp.59-66
    • /
    • 2016
  • It has been generally accepted that obesity and overweight are associated with metabolic diseases and cancer incidence. In fact, obesity increased risks of cancers i.e. breast, liver, pancreatic and prostate. Celastrol is a pentacyclic triterpenoid isolated from Thunder god vine, was used as a Chinese traditional medicine for treatment of inflammatory disorders such as arthritis, lupus erythematosus and Alzheimer's disease. Also, celastrol has various biological properties of chemo-preventive, neuro-protective, and anti-oxidant effects. Recent studies demonstrated that celastrol has anti-proliferation effects in different type of obesity-related cancers and suppresses tumor progression and metastasis. Anticancer effects of celastrol include regulation of $NF-{\kappa}B$, heat shock protein, JNK, VEGF, CXCR4, Akt/mTOR, MMP-9 and so on. For these reasons, celastrol has shown to be a promising anti-tumor agent. In this review, we will address the anticancer activities and multiple mechanisms of celastrol in obesity-related cancers.

The optimal model of reperfusion injury in vitro using H9c2 transformed cardiac myoblasts

  • Son, Euncheol;Lee, Dongju;Woo, Chul-Woong;Kim, Young-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.173-183
    • /
    • 2020
  • An in vitro model for ischemia/reperfusion injury has not been well-established. We hypothesized that this failure may be caused by serum deprivation, the use of glutamine-containing media, and absence of acidosis. Cell viability of H9c2 cells was significantly decreased by serum deprivation. In this condition, reperfusion damage was not observed even after simulating severe ischemia. However, when cells were cultured under 10% dialyzed FBS, cell viability was less affected compared to cells cultured under serum deprivation and reperfusion damage was observed after hypoxia for 24 h. Reperfusion damage after glucose or glutamine deprivation under hypoxia was not significantly different from that after hypoxia only. However, with both glucose and glutamine deprivation, reperfusion damage was significantly increased. After hypoxia with lactic acidosis, reperfusion damage was comparable with that after hypoxia with glucose and glutamine deprivation. Although high-passage H9c2 cells were more resistant to reperfusion damage than low-passage cells, reperfusion damage was observed especially after hypoxia and acidosis with glucose and glutamine deprivation. Cell death induced by reperfusion after hypoxia with acidosis was not prevented by apoptosis, autophagy, or necroptosis inhibitors, but significantly decreased by ferrostatin-1, a ferroptosis inhibitor, and deferoxamine, an iron chelator. These data suggested that in our SIR model, cell death due to reperfusion injury is likely to occur via ferroptosis, which is related with ischemia/reperfusion-induced cell death in vivo. In conclusion, we established an optimal reperfusion injury model, in which ferroptotic cell death occurred by hypoxia and acidosis with or without glucose/glutamine deprivation under 10% dialyzed FBS.

TRAIL Suppresses Human Breast Cancer Cell Migration via MADD/CXCR7

  • Wang, Rui;Li, Jin-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2751-2756
    • /
    • 2015
  • Background: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can specifically induce apoptosis limited to various cancer cells, so this reagent is considered a promising medicine for cancer therapy. TRAIL also exerts effects on non-apoptotic signals, relevant to processes such as metastasis, autophagy and proliferation in cancer cells. However, the mechanisms of TRAIL-regulated non-apoptotic signals are unclear. The purpose of this study was to investigate MADD/CXCR7 effects in TRAIL-mediated breast cancer cell migration. Materials and Methods: The ability of MADD/CXCR7 to regulate MVP signaling in TRAIL-mediated breast cancer cells migration was evaluated by transwell migration assay, quantitative RT-PCR, Western blotting and knock down experiments. Results: In this study, we found that treatment with TRAIL resulted in induced expression levels of MADD and CXCR7 in breast cancer cells. Knock down of MADD followed by treatment with TRAIL resulted in increased cell migration compared to either treatment alone. Similarly, through overexpression and knockdown experiments, we demonstrated that CXCR7 also positively regulated TRAIL-inhibited migration. Surprisingly, knock down of MADD lead to inhibition of TRAIL-induced CXCR7 mRNA and protein expression and overexpression of CXCR7 lead to the reduction of MADD expression, indicating that MADD is an upstream regulatory factor of TRAIL-triggered CXCR7 production and a negative feedback mechanism between MADD and CXCR7. Furthermore, we showed that CXCR7 is involved in MADD-inhibited migration in breast cancer cells. Conclusions: Our work defined a novel signaling pathway implicated in the control of breast cancer migration.

Recent progress (2015-2020) in the investigation of the pharmacological effects and mechanisms of ginsenoside Rb1, a main active ingredient in Panax ginseng Meyer

  • Lin, Zuan;Xie, Rongfang;Zhong, Chenhui;Huang, Jianyong;Shi, Peiying;Yao Hong
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.39-53
    • /
    • 2022
  • Ginsenoside Rb1 (Rb1), one of the most important ingredients in Panax ginseng Meyer, has been confirmed to have favorable activities, including reducing antioxidative stress, inhibiting inflammation, regulating cell autophagy and apoptosis, affecting sugar and lipid metabolism, and regulating various cytokines. This study reviewed the recent progress on the pharmacological effects and mechanisms of Rb1 against cardiovascular and nervous system diseases, diabetes, and their complications, especially those related to neurodegenerative diseases, myocardial ischemia, hypoxia injury, and traumatic brain injury. This review retrieved articles from PubMed and Web of Science that were published from 2015 to 2020. The molecular targets or pathways of the effects of Rb1 on these diseases are referring to HMGB1, GLUT4, 11β-HSD1, ERK, Akt, Notch, NF-κB, MAPK, PPAR-γ, TGF-β1/Smad pathway, PI3K/mTOR pathway, Nrf2/HO-1 pathway, Nrf2/ARE pathway, and MAPK/NF-κB pathway. The potential effects of Rb1 and its possible mechanisms against diseases were further predicted via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and disease ontology semantic and enrichment (DOSE) analyses with the reported targets. This study provides insights into the therapeutic effects of Rb1 and its mechanisms against diseases, which is expected to help in promoting the drug development of Rb1 and its clinical applications.

Role of Sirtuin 1 in Depression and Associated Mechanisms (우울증에 관한 Sirtuin 1의 역할과 관련된 기전)

  • Seog, Dae-Hyun;Park, Sung Woo
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1120-1127
    • /
    • 2021
  • Depression has a negative impact on social functioning due to its high prevalence and increased suicide rate, and is a disease with a high economic burden. Depression is related to diverse brain-related phenomena, such as neuroinflammation, synaptic dysfunction, and cognitive deficit. As antidepressant drugs used in clinical trials have shown poor therapeutic effects, antidepressant drugs that show rapid efficacy urgently need to be developed. Although studies on various genes, proteins, and signaling pathways related to depression have been conducted, the pathogenesis of depression has not been clearly elucidated. Sirtuin 1 is a nicotinamide-adenine dinucleotide- (NAD+-) dependent histone deacetylase and is involved in cell differentiation, apoptosis, autophagy, and cancer metabolism. Recent genetic studies found that sirtuin 1 is a potential target gene for depression. In addition, preclinical studies reported that sirtuin 1 signaling affects depression-like behavior. In this review, we attempt to present up-to-date knowledge of depression and sirtuin 1. We describe the various roles of sirtuin 1 in the regulation of glial activation, circadian rhythm, neurogenesis, and cognitive function and the effects of its expression on depression. Further, we discuss the effect of sirtuin 1 on the impairment of neural plasticity, one of the key mechanisms of depression, and the associated mechanisms of sirtuin 1.

Target Proteins Involved in Aging Mechanism as an Aging Molecular Marker (노화 분자마커로서 노화기전에 관여하는 타켓 단백질)

  • Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.983-989
    • /
    • 2016
  • All cells composing of our body undergo their destiny such as proliferation, differentiation, necrosis, apoptosis and senescence depending on their circumstance with time. The errors occurring in these processes develop several aberrations in phenotypes including cancer, inflammation, aging and diseases. New strategy and approach are required to screen anti-aging compounds derived from natural products. Therefore, here we explain the target proteins to play a key role in aging mechanism. In the first place, matrix metalloproteinases (MMPs) are involved in metastasis, chronic inflammation and skin aging as an aging marker. In particular, histone deacetylases (HDACs) give a great attention to aging researchers who try to extend the life span of animal model. In addition, we describe the signaling pathway related to senescence which p53, IGF-1 and SIRT1 play an important role in. Furthermore, autophagy is involved in the signaling pathway associated with aging. Several new compounds modulating the signaling pathway of senescence are introduced in this review. Here, we try to provide a new insight in the molecular basis for the aging mechanism and development of aging marker. In addition, the compounds introduced here could be available for pharmaceutical applications for the prevention and the treatment of diseases related to aging.

Transcriptome profiling identifies immune response genes against porcine reproductive and respiratory syndrome virus and Haemophilus parasuis co-infection in the lungs of piglets

  • Zhang, Jing;Wang, Jing;Zhang, Xiong;Zhao, Chunping;Zhou, Sixuan;Du, Chunlin;Tan, Ya;Zhang, Yu;Shi, Kaizhi
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.2.1-2.18
    • /
    • 2022
  • Background: Co-infections of the porcine reproductive and respiratory syndrome virus (PRRSV) and the Haemophilus parasuis (HPS) are severe in Chinese pigs, but the immune response genes against co-infected with 2 pathogens in the lungs have not been reported. Objectives: To understand the effect of PRRSV and/or HPS infection on the genes expression associated with lung immune function. Methods: The expression of the immune-related genes was analyzed using RNA-sequencing and bioinformatics. Differentially expressed genes (DEGs) were detected and identified by quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC) and western blotting assays. Results: All experimental pigs showed clinical symptoms and lung lesions. RNA-seq analysis showed that 922 DEGs in co-challenged pigs were more than in the HPS group (709 DEGs) and the PRRSV group (676 DEGs). Eleven DEGs validated by qRT-PCR were consistent with the RNA sequencing results. Eleven common Kyoto Encyclopedia of Genes and Genomes pathways related to infection and immune were found in single-infected and co-challenged pigs, including autophagy, cytokine-cytokine receptor interaction, and antigen processing and presentation, involving different DEGs. A model of immune response to infection with PRRSV and HPS was predicted among the DEGs in the co-challenged pigs. Dual oxidase 1 (DUOX1) and interleukin-21 (IL21) were detected by IHC and western blot and showed significant differences between the co-challenged pigs and the controls. Conclusions: These findings elucidated the transcriptome changes in the lungs after PRRSV and/or HPS infections, providing ideas for further study to inhibit ROS production and promote pulmonary fibrosis caused by co-challenging with PRRSV and HPS.

Prognostic Significance of Beclin-1 Expression in Colorectal Cancer: a Meta-analysis

  • Han, Ye;Xue, Xiao-Feng;Shen, Hu-Gang;Guo, Xiao-Bo;Wang, Xu;Yuan, Bin;Guo, Xing-Po;Kuang, Yu-Ting;Zhi, Qiao-Ming;Zhao, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4583-4587
    • /
    • 2014
  • Objective: Beclin-1 has recently been observed as an essential marker of autophagy in several cancers. However, the prognostic role of Beclin-1 in colorectal neoplasia remains controversial. Our study aimed to evaluate the potential association between Beclin-1 expression and the outcome of colorectal cancer patients. Materials and Methods: All related studies were systematically searched in Pubmed, Embase, Springer and Chinese National Knowledge Infrastructure databases (CNKI), and then a meta-analysis was performed to determine the association of Beclin-1 expression with clinical outcomes. Finally, a total of 6 articles were included in our analysis. Results: Our data showed that high Beclin-1 expression in patients with CRC was associated with poor prognosis in terms of tumor distant metastasis (OR=2.090, 95%CI=1.061-4.119, p=0.033) and overall survival (RR=1.422, 95%CI=1.032-1.959, p=0.031). However, we did not found any correlation between Beclin-1 over-expression and tumor differentiation (OR=1.711, 95%CI=0.920-3.183, p=0.090). In addition, there was no evidence of publication bias as suggested by Egger's tests for tumor distant metastasis (p=1.000), differentiation (p=1.000) and OS (p=0.308). Conclusions: Our present meta-analysis indicated that elevated Beclin-1 expression iss associated with tumor metastasis and a poor prognosis in patients with CRC. Beclin-1 might serve as an efficient prognostic indicator in CRC, and could be a new molecular target in CRC therapy.

Identification of growth trait related genes in a Yorkshire purebred pig population by genome-wide association studies

  • Meng, Qingli;Wang, Kejun;Liu, Xiaolei;Zhou, Haishen;Xu, Li;Wang, Zhaojun;Fang, Meiying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.462-469
    • /
    • 2017
  • Objective: The aim of this study is to identify genomic regions or genes controlling growth traits in pigs. Methods: Using a panel of 54,148 single nucleotide polymorphisms (SNPs), we performed a genome-wide Association (GWA) study in 562 pure Yorshire pigs with four growth traits: average daily gain from 30 kg to 100 kg or 115 kg, and days to 100 kg or 115 kg. Fixed and random model Circulating Probability Unification method was used to identify the associations between 54,148 SNPs and these four traits. SNP annotations were performed through the Sus scrofa data set from Ensembl. Bioinformatics analysis, including gene ontology analysis, pathway analysis and network analysis, was used to identify the candidate genes. Results: We detected 6 significant and 12 suggestive SNPs, and identified 9 candidate genes in close proximity to them (suppressor of glucose by autophagy [SOGA1], R-Spondin 2 [RSPO2], mitogen activated protein kinase kinase 6 [MAP2K6], phospholipase C beta 1 [PLCB1], rho GTPASE activating protein 24 [ARHGAP24], cytoplasmic polyadenylation element binding protein 4 [CPEB4], GLI family zinc finger 2 [GLI2], neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adaptor 2 [NYAP2], and zinc finger protein multitype 2 [ZFPM2]). Gene ontology analysis and literature mining indicated that the candidate genes are involved in bone, muscle, fat, and lung development. Pathway analysis revealed that PLCB1 and MAP2K6 participate in the gonadotropin signaling pathway and suggests that these two genes contribute to growth at the onset of puberty. Conclusion: Our results provide new clues for understanding the genetic mechanisms underlying growth traits, and may help improve these traits in future breeding programs.