Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.8.983

Target Proteins Involved in Aging Mechanism as an Aging Molecular Marker  

Kim, Moon-Moo (Department of Chemistry, Dong-Eui University)
Publication Information
Journal of Life Science / v.26, no.8, 2016 , pp. 983-989 More about this Journal
Abstract
All cells composing of our body undergo their destiny such as proliferation, differentiation, necrosis, apoptosis and senescence depending on their circumstance with time. The errors occurring in these processes develop several aberrations in phenotypes including cancer, inflammation, aging and diseases. New strategy and approach are required to screen anti-aging compounds derived from natural products. Therefore, here we explain the target proteins to play a key role in aging mechanism. In the first place, matrix metalloproteinases (MMPs) are involved in metastasis, chronic inflammation and skin aging as an aging marker. In particular, histone deacetylases (HDACs) give a great attention to aging researchers who try to extend the life span of animal model. In addition, we describe the signaling pathway related to senescence which p53, IGF-1 and SIRT1 play an important role in. Furthermore, autophagy is involved in the signaling pathway associated with aging. Several new compounds modulating the signaling pathway of senescence are introduced in this review. Here, we try to provide a new insight in the molecular basis for the aging mechanism and development of aging marker. In addition, the compounds introduced here could be available for pharmaceutical applications for the prevention and the treatment of diseases related to aging.
Keywords
Aging marker; HDACs; MMPs; senescence; SIRT1;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Adachi, T., Kano, A., Nonomura, S., Kamiya, T. and Hara, H. 2016. Histone deacetylase inhibitors stimulate the susceptibility of A549 cells to a plasma-activated medium treatment. Arch. Biochem. Biophys. 606, 120-127.   DOI
2 Bass, T. M., Weinkove, D., Houthoofd, K., Gems, D. and Partridge, L. 2007. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech. Ageing Dev. 128, 546-552.   DOI
3 Bauden, M., Tassidis, H. and Ansari, D. 2015. In vitro cytotoxicity evaluation of HDAC inhibitor Apicidin in pancreatic carcinoma cells subsequent time and dose dependent treatment. Toxicol. Lett. 236, 8-15.   DOI
4 Beard, M. K. 2012. Bisphosphonate therapy for osteoporosis: combining optimal fracture risk reduction with patient preference. Curr. Med. Res. Opin. 28, 141-147.   DOI
5 Bedelbaeva, K., Snyder, A., Gourevitch, D., Clark, L., Zhang, X.-M., Leferovich, J., Cheverud, J. M., Lieberman, P. and Heber-Katz, E. 2010. Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc. Natl. Acad. Sci. USA 107, 5845-5850.   DOI
6 Benavent, F., Capobianco, C. S., Garona, J., Cirigliano, S. M., Perera, Y., Urtreger, A. J., Perea, S. E., Alonso, D. F. and Farina, H. G. 2016. CIGB-300, an anti-CK2 peptide, inhibits angiogenesis, tumor cell invasion and metastasis in lung cancer models. Lung Cancer [Epup ahead of print].
7 Berntson, L., Hedlund-Treutiger, I. and Alving, K. 2016. Anti-inflammatory effect of exclusive enteral nutrition in patients with juvenile idiopathic arthritis. Clin. Exp. Rheumat. [Epup ahead of print].
8 Bursch, W., Ellinger, A., Kienzl, H., Török, L., Pandey, S., Sikorska, M., Walker, R. and Hermann, R. S. 1996. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17, 1595-1607.   DOI
9 Campisi, J. 2005. Suppressing cancer: the importance of being senescent. Science 309, 886-887.   DOI
10 Cao, Y. and Klionsky, D. J. 2007. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 17, 839-849.   DOI
11 Chua, K. F., Mostoslavsky, R., Lombard, D. B., Pang, W. W., Saito, S. i., Franco, S., Kaushal, D., Cheng, H. L., Fischer, M. R. and Stokes, N. 2005. Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab. 2, 67-76.   DOI
12 Clutterbuck, A., Asplin, K., Harris, P., Allaway, D. and Mobasheri, A. 2009. Targeting matrix metalloproteinases in inflammatory conditions. Curr. Drug Targets 10, 1245-1254.   DOI
13 Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I. and Pereira-Smith, O. 1995. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Nat Acad. Sci. USA 92, 9363-9367.   DOI
14 Cohen, G. 1983. The pathobiology of Parkinson’s disease: biochemical aspects of dopamine neuron senescence. J. Neural Transm. Suppl. 19, 89-103.
15 Dahl, K. N., Scaffidi, P., Islam, M. F., Yodh, A. G., Wilson, K. L. and Misteli, T. 2006. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 103, 10271-10276.   DOI
16 De Ruijter, A. J., Van Gennip, A. H., Caron, H. N., Stephan, K. and Van Kuilenburg, A. B. 2003. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737-749.   DOI
17 Du, J., Zhou, Y., Su, X., Yu, J. J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J. H. and Choi, B. H. 2011. Sirt5 is a NAD-dependentprotein lysine demalonylase and desuccinylase. Science 334, 806-809.   DOI
18 Duncan, H. F., Smith, A. J., Fleming, G. J., Partridge, N. C., Shimizu, E., Moran, G. P. and Cooper, P. R. 2016. The Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Promotes Dental Pulp Repair Mechanisms ThroughModulation of Matrix Metalloproteinase-13 Activity. J. Cell. Physiol. 231, 798-816.   DOI
19 Erusalimsky, J. D. and Kurz, D. J. 2005. Cellular senescence in vivo: its relevance in ageing and cardiovascular disease. Exp. Gerontol. 40, 634-642.   DOI
20 Feldman, J. L., Dittenhafer-Reed, K. E. and Denu, J. M. 2012. Sirtuin catalysis and regulation. J. Biol. Chem. 287, 42419-42427.   DOI
21 Hou, C., Miao, Y., Wang, X., Chen, C., Lin, B. and Hu, Z. 2016. Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases in the hair cycle. Exp. Ther. Med. 12, 231-237.   DOI
22 Gomes, J. R., Omar, N., Neves, J. d. S. and Novaes, P. 2016. Doxycycline reduces the expression and activity of matrix metalloproteinase-2 in the periodontal ligament of the rat incisor without altering the eruption process. J. Periodontal Res. [Epup ahead of print].
23 Guillemin, Y., Le Broc, D., Ségalen, C., Kurkdjian, E. and Gouze, J. 2016. Efficacy of a collagen-based dressing in an animal model of delayed wound healing. J. Wound Care 25, 406-413.   DOI
24 Herbig, U. and Sedivy, J. M. 2006. Regulation of growth arrest in senescence: telomere damage is not the end of the story. Mech. Ageing Dev. 127, 16-24.   DOI
25 Houtkooper, R. H., Pirinen, E. and Auwerx, J. 2012. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225-238.   DOI
26 Imai, S. I., Armstrong, C. M., Kaeberlein, M. and Guarente, L. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795-800.   DOI
27 Islam, M. N., Islam, M. S., Hoque, M. A., Kato, T., Nishino, N., Ito, A. and Yoshida, M. 2014. Bicyclic tetrapeptides as potent HDAC inhibitors: Effect of aliphatic loop position and hydrophobicity on inhibitory activity. Bioorg. Med. Chem. 22, 3862-3870.   DOI
28 Jia, G., Cheng, G., Gangahar, D. M. and Agrawal, D. K. 2006. Insulin-like growth factor-1 and TNF-α regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. Immunol. Cell Biol. 84, 448-454.   DOI
29 Kang, H. L., Benzer, S. and Min, K. T. 2002. Life extension in Drosophila by feeding a drug. Proc. Nat Acad. Sci. USA 99, 838-843.   DOI
30 Jia, K. and Levine, B. 2007. Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3, 597-599.   DOI
31 Kazantsev, A. G. and Thompson, L. M. 2008. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat. Rev. Drug Discov. 7, 854-868.   DOI
32 Kim, R. H., Kang, M. K., Kim, T., Yang, P., Bae, S., Williams, D. W., Phung, S., Shin, K. H., Hong, C. and Park, N. H. 2015. Regulation of p53 during senescence in normal human keratinocytes. Aging Cell 14, 838-846.   DOI
33 Kurgan, Ş., Fentoğlu, Ö., Önder, C., Serdar, M., Eser, F., Tatakis, D. and Günhan, M. 2015. The effects of periodontal therapy on gingival crevicular fluid matrix metalloproteinase 8, interleukin-6 and prostaglandin E2 levels in patients with rheumatoid arthritis. J. Periodontal. Res. [Epup ahead of print].
34 Levine, B. and Kroemer, G. 2008. Autophagy in the pathogenesis of disease. Cell 132, 27-42.   DOI
35 Li, J. Y. and Wang, H. L. 2014. Biomarkers associated with periimplant diseases. Implant Dent. 23, 607-611.
36 Li, P., Du, Q., Cao, Z., Guo, Z., Evankovich, J., Yan, W., Chang, Y., Shao, L., Stolz, D. B. and Tsung, A. 2012. Interferon-gamma induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon-regulatory factor-1 (IRF-1). Cancer Lett. 314, 213-222.   DOI
37 Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H. and Levine, B. 1999. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672-676.   DOI
38 Madeo, F., Tavernarakis, N. and Kroemer, G. 2010. Can autophagy promote longevity? Nat. Cell Biol. 12, 842-846.   DOI
39 Lin, H. K., Chen, Z., Wang, G., Nardella, C., Lee, S. W., Chan, C. H., Yang, W. L., Wang, J., Egia, A. and Nakayama, K. I. 2010. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464, 374-379.   DOI
40 Longo, V. D. 2003. The Ras and Sch9 pathways regulate stress resistance and longevity. Exp. Gerontol. 38, 807-811.   DOI
41 Mizushima, N. 2007. Autophagy: process and function. Genes Dev. 21, 2861-2873.   DOI
42 Oliva, J., French, B. A., Li, J., Bardag-Gorce, F., Fu, P. and French, S. W. 2008. Sirt1 is involved in energy metabolism: the role of chronic ethanol feeding and resveratrol. Exp. Mol. Pathol. 85, 155-159.   DOI
43 Onodera, J. and Ohsumi, Y. 2005. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J. Biol. Chem. 280, 31582-31586.   DOI
44 Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., Packer, M., Schneider, M. D. and Levine, B. 2005. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927-939.   DOI
45 Pietruszewska, W., Bojanowska-Poźniak, K. and Kobos, J. 2016. Matrix metalloproteinases MMP1, MMP2, MMP9 and their tissue inhibitors TIMP1, TIMP2, TIMP3 in head and neck cancer: an immunohistochemical study. Otolaryngol. Pol. 70, 32-43.
46 Pyo, J. O., Nah, J. and Jung, Y. K. 2012. Molecules and their functions in autophagy. Exp. Mol. Med. 44, 73-80.   DOI
47 Rubinsztein, D. C., Shpilka, T. and Elazar, Z. 2012. Mechanisms of autophagosome biogenesis. Curr. Biol. 22, 29-34.   DOI
48 Raz, V., Vermolen, B. J., Garini, Y., Onderwater, J. J., Mommaas-Kienhuis, M. A., Koster, A. J., Young, I. T., Tanke, H. and Dirks, R. W. 2008. The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. J. Cell Sci. 121, 4018-4028.   DOI
49 Robert, S., Gicquel, T., Victoni, T., Valenca, S. S., Barreto, E., Bailly-Maître, B., Boichot, E. and Lagente, V. 2016. Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis. Biosci. Rep. BSR20160107 [Epup ahead of print].
50 Rogina, B. and Helfand, S. L. 2004. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. USA 101, 15998-16003.   DOI
51 Ryter, S. W., Kim, H. P., Hoetzel, A., Park, J. W., Nakahira, K., Wang, X. and Choi, A. M. 2007. Mechanisms of cell death in oxidative stress. Antioxid. Redox Signal. 9, 49-89.   DOI
52 Shintani, T. and Klionsky, D. J. 2004. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J. Biol. Chem. 279, 29889-29894.   DOI
53 Soares, A. P., do Espírito Santo, R. F., Line, S. R. P., Pinto, M. d. G. F., de Moura Santos, P., Toralles, M. B. P. and do Espírito Santo, A. R. 2016. Bisphosphonates: Pharmacokinetics, bioavailability, mechanisms of action, clinical applications in children, and effects on tooth development. Environ. Toxicol. Pharmacol. 42, 212-217.   DOI
54 Sun, J., Kale, S. P., Childress, A. M., Pinswasdi, C. and Jazwinski, S. M. 1994. Divergent roles of RAS1 and RAS2 in yeast longevity. J. Biol. Chem. 269, 18638- 18645.
55 Tran, D., Bergholz, J., Zhang, H., He, H., Wang, Y., Zhang, Y., Li, Q., Kirkland, J. L. and Xiao, Z. X. 2014. Insulin-like growth factor-1 regulates the SIRT1-p53 pathway in cellular senescence. Aging Cell 13, 669-678.   DOI
56 Thakur, V. and Bedogni, B. 2016. The membrane tethered matrix metalloproteinase MT1-MMP at the forefront of melanoma cell invasion and metastasis. Pharmacol.l Res. 111, 17-22.   DOI
57 Tissenbaum, H. A. and Guarente, L. 2001. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227-230.   DOI
58 Tomás-Loba, A., Flores, I., Fernández-Marcos, P. J., Cayuela, M. L., Maraver, A., Tejera, A., Borrás, C., Matheu, A., Klatt, P. and Flores, J. M. 2008. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135, 609-622.   DOI
59 Verdin, E., Dequiedt, F. and Kasler, H. G. 2003. Class II histone deacetylases: versatile regulators. Trends Genet. 19, 286-293.   DOI
60 Wang, W., Wang, L., Xu, Z., Yin, Y., Su, J., Niu, X. and Cao, X. 2016. Effects of estradiol on reduction of osteoarthritis in rabbits through effect on matrix metalloproteinase proteins. Iran. J. Basic Md. Sci. 19, 310.
61 Witt, O., Deubzer, H. E., Milde, T. and Oehme, I. 2009. HDAC family: What are the cancer relevant targets? Cancer Lett. 277, 8-21.   DOI
62 Xie, Z. and Klionsky, D. J. 2007. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9, 1102-1109.   DOI
63 Xie, Z., Nair, U. and Klionsky, D. J. 2008. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19, 3290-3298.   DOI
64 Yorimitsu, T. and Klionsky, D. J. 2005. Autophagy: molecular machinery for self-eating. Cell Death Differ. 12, 1542-1552.   DOI
65 Zhou, W., Feng, X., Han, H., Guo, S. and Wang, G. 2016. Synergistic effects of combined treatment with histone deacetylase inhibitor suberoylanilide hydroxamic acid and TRAIL on human breast cancer cells. Sci. Rep. 6, 28004, [Epup ahead of print].   DOI
66 Yoshida, M., Furumai, R., Nishiyama, M., Komatsu, Y., Nishino, N. and Horinouchi, S. 2001. Histone deacetylase as a new target for cancer chemotherapy. Cancer Chemother. Pharmacol. 48, 20-26.   DOI
67 Young, J., Wu, S., Hansteen, G., Du, C., Sambucetti, L., Remiszewski, S., O’Farrell, A. M., Hill, B., Lavau, C. and Murray, L. 2004. Inhibitors of histone deacetylases promote hematopoietic stem cell self-renewal. Cytotherapy 6, 328-336.   DOI
68 Zhou, R., Han, L., Li, G. and Tong, T. 2009. Senescence delay and repression of p16INK4a by Lsh via recruitment of histone deacetylases in human diploid fibroblasts. Nucleic acids Res. 37, 5183-5196.   DOI