Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.12.1120

Role of Sirtuin 1 in Depression and Associated Mechanisms  

Seog, Dae-Hyun (Department of Biochemistry, College of Medicine, Inje University)
Park, Sung Woo (Department of Convergence Biomedical Science, College of Medicine, Inje University)
Publication Information
Journal of Life Science / v.31, no.12, 2021 , pp. 1120-1127 More about this Journal
Abstract
Depression has a negative impact on social functioning due to its high prevalence and increased suicide rate, and is a disease with a high economic burden. Depression is related to diverse brain-related phenomena, such as neuroinflammation, synaptic dysfunction, and cognitive deficit. As antidepressant drugs used in clinical trials have shown poor therapeutic effects, antidepressant drugs that show rapid efficacy urgently need to be developed. Although studies on various genes, proteins, and signaling pathways related to depression have been conducted, the pathogenesis of depression has not been clearly elucidated. Sirtuin 1 is a nicotinamide-adenine dinucleotide- (NAD+-) dependent histone deacetylase and is involved in cell differentiation, apoptosis, autophagy, and cancer metabolism. Recent genetic studies found that sirtuin 1 is a potential target gene for depression. In addition, preclinical studies reported that sirtuin 1 signaling affects depression-like behavior. In this review, we attempt to present up-to-date knowledge of depression and sirtuin 1. We describe the various roles of sirtuin 1 in the regulation of glial activation, circadian rhythm, neurogenesis, and cognitive function and the effects of its expression on depression. Further, we discuss the effect of sirtuin 1 on the impairment of neural plasticity, one of the key mechanisms of depression, and the associated mechanisms of sirtuin 1.
Keywords
Antidepressant drug; depression; mood; neural plasticity; Sirtuin 1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Luo, X. J. and Zhang, C. 2016. Down-regulation of SIRT1 gene expression in major depressive disorder. Am. J. Psychiatry 173, 1046.   DOI
2 Malykhin, N. V. and Coupland, N. J. 2015. Hippocampal neuroplasticity in major depressive disorder. Neuroscience 309, 200-213.   DOI
3 Michan, S. and Sinclair, D. 2007. Sirtuins in mammals: insights into their biological function. Biochem. J. 404, 1-13.   DOI
4 Nakahata, Y., Kaluzova, M., Grimaldi, B., Sahar, S., Hirayama, J., Chen, D., Guarente, L. P. and Sassone-Corsi, P. 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329-340.   DOI
5 O'Connor, J. C., Lawson, M. A., Andre, C., Moreau, M., Lestage, J., Castanon, N., Kelley, K. W. and Dantzer, R. 2009. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol. Psychiatry 14, 511-522.   DOI
6 Ozawa, H., Miyagawa, S., Fukushima, S., Itoh, E., Harada, A., Saito, A., Ueno, T., Toda, K., Kuratani, T. and Sawa, Y. 2016. Sirtuin1 regulates the stem cell therapeutic effects on regenerative capability for treating severe heart failure in a juvenile animal model. Ann. Thorac. Surg. 102, 803-812.   DOI
7 Chang, H. C. and Guarente, L. 2013. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448-1460.   DOI
8 CONVERGE consortium. 2015. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523, 588-591.   DOI
9 Duman, R. S. and Aghajanian, G. K. 2012. Synaptic dysfunction in depression: potential therapeutic targets. Science 338, 68-72.   DOI
10 Dwivedi, Y., Rizavi, H. S., Roberts, R. C., Conley, R. C., Tamminga, C. A. and Pandey, G. N. 2001. Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J. Neurochem. 77, 916-928.   DOI
11 Gao, J., Wang, W. Y., Mao, Y. W., Graff, J., Guan, J. S., Pan, L., Mak, G., Kim, D., Su, S. C. and Tsai, L. H. 2010. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466, 1105-1109.   DOI
12 Ali, S. H., Madhana, R. M., K. V. A., Kasala, E. R., Bodduluru, L. N., Pitta, S., Mahareddy, J. R. and Lahkar, M. 2015. Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice. Steroids 101, 37-42.   DOI
13 Piccinni, A., Marazziti, D., Catena, M., Domenici, L., Del Debbio, A., Bianchi, C., Mannari, C., Martini, C., Da Pozzo, E., Schiavi, E., Mariotti, A., Roncaglia, I., Palla, A., Consoli, G., Giovannini, L., Massimetti, G. and Dell'Osso, L. 2008. Plasma and serum brain-derived neurotrophic factor (BDNF) in depressed patients during 1 year of antidepressant treatments. J. Affect. Disord. 105, 279-283.   DOI
14 Price, J. L. and Drevets, W. C. 2010. Neurocircuitry of mood disorders. Neuropsychopharmacology 35, 192-216.   DOI
15 Lucassen, P. J., Oomen, C. A., Naninck, E. F., Fitzsimons, C. P., van Dam, A. M., Czeh, B. and Korosi, A. 2015. Regulation of adult neurogenesis and plasticity by (Early) stress, glucocorticoids, and inflammation. Cold Spring Harb. Perspect. Biol. 7, a021303.   DOI
16 Huhtiniemi, T., Wittekindt, C., Laitinen, T., Leppanen, J., Salminen, A., Poso, A. and Lahtela-Kakkonen, M. 2006. Comparative and pharmacophore model for deacetylase SIRT1. J. Comput. Aided. Mol. Des. 20, 589-599.   DOI
17 Lee, I. H., Cao, L., Mostoslavsky, R., Lombard, D. B., Liu, J., Bruns, N. E., Tsokos, M., Alt, F. W. and Finkel, T. 2008. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA. 105, 3374-3379.   DOI
18 Li, N., Lee, B., Liu, R. J., Banasr, M., Dwyer, J. M., Iwata, M., Li, X. Y., Aghajanian, G. and Duman, R. S. 2010. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329, 959-964.   DOI
19 Iniguez, S. D., Vialou, V., Warren, B. L., Cao, J. L., Alcantara, L. F., Davis, L. C., Manojlovic, Z., Neve, R. L., Russo, S. J., Han, M. H., Nestler, E. J. and Bolanos-Guzman, C. A. 2010. Extracellular signal-regulated kinase-2 within the ventral tegmental area regulates responses to stress. J. Neurosci. 30, 7652-7663.   DOI
20 Akinfiresoye, L. and Tizabi, Y. 2013. Antidepressant effects of AMPA and ketamine combination: role of hippocampal BDNF, synapsin, and mTOR. Psychopharmacology (Berl) 230, 291-298.   DOI
21 Balu, D. T., Hoshaw, B. A., Malberg, J. E., Rosenzweig-Lipson, S., Schechter, L. E. and Lucki, I. 2008. Differential regulation of central BDNF protein levels by antidepressant and non-antidepressant drug treatments. Brain Res. 1211, 37-43.   DOI
22 Kovanen, L., Donner, K. and Partonen, T. 2015. SIRT1 Polymorphisms Associate with seasonal weight variation, depressive disorders, and diastolic blood pressure in the general population. PLoS One 10, e0141001.   DOI
23 Hurley, L. L., Akinfiresoye, L., Kalejaiye, O. and Tizabi, Y. 2014. Antidepressant effects of resveratrol in an animal model of depression. Behav. Brain Res. 268, 1-7.   DOI
24 Impey, S., Obrietan, K. and Storm, D. R. 1999. Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 23, 11-14.   DOI
25 Tonkin, J., Villarroya, F., Puri, P. L. and Vinciguerra, M. 2012. SIRT1 signaling as potential modulator of skeletal muscle diseases. Curr. Opin. Pharmacol. 12, 372-376.   DOI
26 Wang, H., Xu, Y., Yan, J., Zhao, X., Sun, X., Zhang, Y., Guo, J. and Zhu, C. 2009. Acteoside protects human neuroblastoma SH-SY5Y cells against beta-amyloid-induced cell injury. Brain Res. 1283, 139-147.   DOI
27 Kaeberlein, M., McVey, M. and Guarente, L. 1999. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570-2580.   DOI
28 Kishi, T., Yoshimura, R., Kitajima, T., Okochi, T., Okumura, T., Tsunoka, T., Yamanouchi, Y., Kinoshita, Y., Kawashima, K., Fukuo, Y., Naitoh, H., Umene-Nakano, W., Inada, T., Nakamura, J., Ozaki, N. and Iwata, N. 2010. SIRT1 gene is associated with major depressive disorder in the Japanese population. J. Affect. Disord. 126, 167-173.   DOI
29 Kodali, M., Parihar, V. K., Hattiangady, B., Mishra, V., Shuai, B. and Shetty, A. K. 2015. Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation. Sci. Rep. 5, 8075.   DOI
30 Brochier, C., Dennis, G., Rivieccio, M. A., McLaughlin, K., Coppola, G., Ratan, R. R. and Langley, B. 2013. Specific acetylation of p53 by HDAC inhibition prevents DNA damage-induced apoptosis in neurons. J. Neurosci. 33, 8621-8632.   DOI
31 Abe-Higuchi, N., Uchida, S., Yamagata, H., Higuchi, F., Hobara, T., Hara, K., Kobayashi, A. and Watanabe, Y. 2016. Hippocampal Sirtuin 1 signaling mediates depression-like behavior. Biol. Psychiatry 80, 815-826.   DOI
32 Renthal, W., Kumar, A., Xiao, G., Wilkinson, M., Covington, H. E. 3rd., Maze, I., Sikder, D., Robison, A. J., LaPlant, Q., Dietz, D. M., Russo, S. J., Vialou, V., Chakravarty, S., Kodadek, T. J., Stack, A., Kabbaj, M. and Nestler, E. J. 2009. Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron 62, 335-348.   DOI
33 Kwon, H. S. and Ott, M. 2008. The ups and downs of SIRT1. Trends Biochem. 33, 517-525.   DOI
34 Sarkisova, K. and van Luijtelaar, G. 2011. The WAG/Rij strain: a genetic animal model of absence epilepsy with comorbidity of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 854-876.
35 Sauve, A. A, Wolberger, C., Schramm, V. L. and Boeke, J. D. 2006. The biochemistry of sirtuins. Annu. Rev. Biochem. 75, 435-465.   DOI
36 Masi, G. and Brovedani, P. 2011. The hippocampus, neurotrophic factors and depression: possible implications for the pharmacotherapy of depression. CNS Drugs 25, 913-931.   DOI
37 McEwen, B. S., Eiland, L., Hunter, R. G. and Miller, M. M. 2012. Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology 62, 3-12.   DOI
38 Michan, S., Li, Y., Chou, M. M., Parrella, E., Ge, H., Long, J. M., Allard, J. S., Lewis, K., Miller, M., Xu, W., Mervis, R. F., Chen, J., Guerin, K. I., Smith, L. E., McBurney, M. W., Sinclair, D. A., Baudry, M., de Cabo, R. and Longo, V. D. 2010. SIRT1 is essential for normal cognitive function and synaptic plasticity. J. Neurosci. 30, 9695-9707.   DOI
39 Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. and Sassone-Corsi, P. 2009. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324, 654-657.   DOI
40 Nivoli, A., Porcelli, S., Albani, D., Forloni, G., Fusco, F., Colom, F., Vieta, E. and Serretti, A. 2016. Association between Sirtuin 1 gene rs10997870 polymorphism and suicide behaviors in bipolar disorder. Neuropsychobiology 74, 1-7.   DOI
41 Albrecht, U. 2013. Circadian clocks and mood-related behaviors. Handb. Exp. Pharmacol. 217, 227-239.   DOI
42 Albrecht, U. 2017. Molecular mechanisms in mood regulation involving the circadian clock. Front. Neurol. 8, 30.   DOI
43 Wirz-Justice, A. 2006. Biological rhythm disturbances in mood disorders. Int. Clin. Psychopharmacol. 21, S11-S15.   DOI
44 Duric, V., Banasr, M., Licznerski, P., Schmidt, H. D., Stockmeier, C. A., Simen, A. A., Newton, S. S. and Duman, R. S. 2010. A negative regulator of MAP kinase causes depressive behavior. Nat. Med. 16, 1328-1332.   DOI
45 Ge, L., Liu, L., Liu, H., Liu, S., Xue, H., Wang, X., Yuan, L., Wang, Z. and Liu, D. 2015. Resveratrol abrogates lipopolysaccharide-induced depressive-like behavior, neuroinflammatory response, and CREB/BDNF signaling in mice. Eur. J. Pharmacol. 768, 49-57.   DOI
46 Ozawa, Y., Kubota, S., Narimatsu, T., Yuki, K., Koto, T., Sasaki, M. and Tsubota, K. 2010. Retinal aging and sirtuins. Ophthalmic Res. 44, 199-203.   DOI
47 Ramadori, G., Fujikawa, T., Anderson, J., Berglund, E. D., Frazao, R., Michan, S., Vianna, C. R., Sinclair, D. A., Elias, C. F. and Coppari, R. 2011. SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metab. 14, 301-312.   DOI
48 Wang, R., Zhang, Y., Li, J. and Zhang, C. 2017. Resveratrol ameliorates spatial learning memory impairment induced by Abeta(1-42) in rats. Neuroscience 344, 39-47.   DOI
49 Li, Y., Xu, W., McBurney, M. W. and Longo, V. D. 2008. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab. 8, 38-48.   DOI
50 Winder, D. G., Martin, K. C., Muzzio, I. A., Rohrer, D., Chruscinski, A., Kobilka, B. and Kandel, E. R. 1999. ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron 24, 715-726.   DOI
51 Wojcik, M., Mac-Marcjanek, K. and Wozniak, L. A. 2009. Physiological and pathophysiological functions of SIRT1. Mini Rev. Med. Chem. 9, 386-394.   DOI
52 Yang, Y., Fu, W., Chen, J., Olashaw, N., Zhang, X., Nicosia, S. V., Bhalla, K. and Bai, W. 2007. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat. Cell Biol. 9, 1253-1262.   DOI
53 Yirmiya, R., Rimmerman, N. and Reshef, R. 2015. Depression as a microglial disease. Trends Neurosci. 38, 637-658.   DOI
54 Zarate, C. A. Jr., Singh, J. B., Carlson, P. J., Brutsche, N. E., Ameli, R., Luckenbaugh, D. A., Charney, D. S. and Manji, H. K. 2006. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 63, 856-864.   DOI
55 Duman, C. H., Schlesinger, L., Kodama, M., Russell, D. S. and Duman, R. S. 2007. A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol. Psychiatry 61, 661-670.   DOI
56 Hayley, S. and Litteljohn, D. 2013. Neuroplasticity and the next wave of antidepressant strategies. Front. Cell Neurosci. 7, 218.   DOI
57 Mimura, T., Kaji, Y., Noma, H., Funatsu, H. and Okamoto, S. 2013. The role of SIRT1 in ocular aging. Exp. Eye Res. 116, 17-26.   DOI
58 Libert, S., Pointer, K., Bell, E. L., Das, A., Cohen, D. E., Asara, J. M., Kapur, K., Bergmann, S., Preisig, M., Otowa, T., Kendler, K. S., Chen, X., Hettema, J. M., van den Oord, E. J., Rubio, J. P. and Guarente, L. 2011. SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 147, 1459-1472.   DOI
59 Cohen, D. E., Supinski, A. M., Bonkowski, M. S., Donmez, G. and Guarente, L. P. 2009. Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev. 23, 2812-2817.   DOI
60 Corpas, R., Revilla, S., Ursulet, S., Castro-Freire, M., Kaliman, P., Petegnief, V., Gimenez-Llort, L., Sarkis, C., Pallas, M. and Sanfeliu, C. 2017. SIRT1 overexpression in mouse hippocampus induces cognitive enhancement through proteostatic and neurotrophic mechanisms. Mol. Neurobiol. 54, 5604-5619.   DOI
61 Duman, R. S. and Voleti, B. 2012. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci. 35, 47-56.   DOI
62 Alonso, M., Melani, M., Converso, D., Jaitovich, A., Paz, C., Carreras, M. C., Medina, J. H. and Poderoso, J. J. 2004. Mitochondrial extracellular signal-regulated kinases 1/2 (ERK1/2) are modulated during brain development. J. Neurochem. 89, 248-256.   DOI
63 Asher, G., Gatfield, D., Stratmann, M., Reinke, H., Dibner, C., Kreppel, F., Mostoslavsky, R., Alt, F. W. and Schibler, U. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317-328.   DOI
64 Ferland, C. L. and Schrader, L. A. 2011. Regulation of histone acetylation in the hippocampus of chronically stressed rats: a potential role of sirtuins. Neuroscience 174, 104-114.   DOI
65 Brummelte, S., Pawluski, J. L. and Galea, L. A. 2006. High post-partum levels of corticosterone given to dams influence postnatal hippocampal cell proliferation and behavior of offspring: A model of post-partum stress and possible depression. Horm. Behav. 50, 370-382.   DOI
66 Codocedo, J. F., Allard, C., Godoy, J. A., Varela-Nallar, L. and Inestrosa, N. C. 2012. SIRT1 regulates dendritic development in hippocampal neurons. PLoS One 7, e47073.   DOI
67 Ferland, C. L., Hawleym, W. R., Puckettm, R. E., Winebergm, K., Lubinm, F. D., Dohanichm, G. P. and Schrader, L. A. 2013. Sirtuin activity in dentate gyrus contributes to chronic stress- induced behavior and extracellular signal-regulated protein kinases 1 and 2 cascade changes in the hippocampus. Biol. Psychiatry 74, 927-935 .   DOI
68 Han, J., Hubbard, B. P., Lee, J., Montagna, C., Lee, H. W., Sinclair, D. A. and Suh, Y. 2013. Analysis of 41 cancer cell lines reveals excessive allelic loss and novel mutations in the SIRT1 gene. Cell Cycle 12, 263-270.   DOI
69 Liu, L., Zhang, Q., Cai, Y., Sun, D., He, X., Wang, L., Yu, D., Li, X., Xiong, X., Xu, H., Yang, Q. and Fan, X. 2016. Resveratrol counteracts lipopolysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis. Oncotarget 7, 56045-56059.   DOI
70 Lopez, A. D. and Mathers, C. D. 2006. Measuring the global burden of disease and epidemiological transitions: 2002-2030. Ann. Trop. Med. Parasitol. 100, 481-499.   DOI
71 Seo, M. K., Kim, H. K., Baek, S. Y., Lee, J. G., Urm, S. H., Park, S. W. and Seog, D. H. 2021. A study on the effects of sirtuin 1 on dendritic outgrowth and spine formation and mechanism in neuronal cells. J. Life Sci. 9, 806-817.