• Title/Summary/Keyword: autonomous steering

Search Result 183, Processing Time 0.025 seconds

Development of the autnomous road vehicle (무인 자동차 개발 연구)

  • 최진욱;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.88-93
    • /
    • 1993
  • This paper introduces an ARV(Autonomous Road Vehicle) system which can run on orads without help of a driver by detecting road boundaries through computer vision. This vehicle can also detect obstacles in front through sonar sensors and infrared sensors. This system largely consists of a handle steering module and a braking module. From road boundaries, the steering module determines handle turn angle. The braking module stops or decelerates to avoid collision depending on the relative speeds and distance to the obstacles detected by different sensors. This ARV system has been implemented in a small jeep and can run 30-40 km/h city traffic. In this paper, we illustrate the structure of the ARV systems and its operation principle.

  • PDF

Overlapped Image Learning Neural Network for Autonomous Driving in the Indoor Environment (실내 환경에서의 자율주행을 위한 중첩 이미지 학습 신경망)

  • Jo, Jeong-won;Lee, Chang-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.349-350
    • /
    • 2019
  • The autonomous driving drones experimented in the existing indoor corridor environment was a way to give the steering command to the drones by the neural network operation of the notebook due to the limitation of the operation performance of the drones. In this paper, to overcome these limitations, we have studied autonomous driving in indoor corridor environment using NVIDIA Jetson TX2 board.

  • PDF

Application of CNN for steering control of autonomous vehicle (자율주행차 조향제어를 위한 CNN의 적용)

  • Park, Sung-chan;Hwang, Kwang-bok;Park, Hee-mun;Choi, Young-kiu;Park, Jin-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.468-469
    • /
    • 2018
  • We design CNN(convolutional neural network) which is applicable to steering control system of autonomous vehicle. CNN has been widely used in many fields, especially in image classifications. But CNN has not been applied much to the regression problem such as function approximation. This is because the input of CNN has a multidimensional data structure such as image data, which makes it is not applicable to general control systems. Recently, autonomous vehicles have been actively studied, and many techniques are required to implement autonomous vehicles. For this purpose, many researches have been studied to detect the lane by using the image through the black box mounted on the vehicle, and to get the vanishing point according to the detected lane for control the autonomous vehicle. However, in detecting the vanishing point, it is difficult to detect the vanishing point with stability due to various factors such as the external environment of the image, disappearance of the instant lane and detection of the opposite lane. In this study, we apply CNN for steering control of an autonomous vehicle using a black box image of a car.

  • PDF

Autonomous-guided orchard sprayer using overhead guidance rail (요버헤드 가이던스 레일 추종 방식에 의한 과수방제기의 무인 주행)

  • Shin, B.S.;Kim, S.H.;Park, J.U.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.6 s.119
    • /
    • pp.489-499
    • /
    • 2006
  • Since the application of chemicals in confined spaces under the canopy of an orchard is hazardous work, it is needed to develop an autonomous guidance system for an orchard sprayer. The autonomous guidance system developed in this research could steer the vehicle by tracking an overhead guidance rail, which was installed on an existing frame structure. The autonomous guidance system consisted of an 80196 kc microprocessor, an inclinometer, two interface circuits of actuators for steering and ground speed control, and a fuzzy control algorithm. In addition, overhead guidance rails for both straight and curved paths were devised, and a trolley was designed to move smoothly along the overhead guidance rails. Evaluation tests showed that the experimental vehicle could travel along the desired path at a ground speed of 30 $\sim$ 50 cm/s with a RMS error of 5 cm and maximum deviation of less than 12 cm. Even when the vehicle started with an initial offset or a deflected heading angle, it could move quickly to track the desired path after traveling 2 $\sim$ 3 m. The vehicle could also complete turns with a curvature of 1 m. However, at a ground speed of 50 cm/s, the vehicle tended to over-steer, resulting in a zigzag motion along the straight path, and tended to turn outward from the projected line of the guidance rail.

Real time obstacle avoidance for autonomous mobile robot (이동 로봇의 실시간 충돌회피)

  • 권영도;이진수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.434-439
    • /
    • 1993
  • This paper present a sensor based obstacle avoidance method which is based on a VFH(Vector Field Histogram) method. The basic idea of obstacle avoidance is to find a minimum obstacle direction and distance. From the minimum sonar index and the target direction high level system determine steering angle of mobile robot. The sonar sensor system consists of 12 ultra sonic sensor, and each sensor have its direction and safety value. This method has advantage on calculation speed and small memory. This method is implemented on indoor autonomous vehicle'ALiVE-2'.

  • PDF

Development of autonomous system using magnetic position meter (자기거리계를 이용한 자율주행시스템의 개발)

  • Kim, Geun-Mo;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.343-348
    • /
    • 2007
  • Development of autonomous vehicle system that use magnetic position meter research of intelligence transportation system is progressed worldwide active by fast increase of vehicles. Among them, research about autonomous of vehicles occupies field. And autonomous of vehicles is element that path recognition is basic. Existent magnetic base autonomous system analyzes three-dimensional data of magnet marker to 3 axises magnetic sensor and recognized route. But because using Magnetic Wire and Magnetic Position Meter in treatise that see, measure side lateral error and propose system that driving. And system that compare with system of autonomous vehicles and propose wishes to verify by hardware of that specification and simple algorithm through an experiment that autonomous is available.

AUTONOMOUS TRACTOR-LIKE ROBOT TRAVELING ALONG THE CONTOUR LINE ON THE SLOPE TERRAIN

  • Torisu, R.;Takeda, J.;Shen, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.690-697
    • /
    • 2000
  • The objective of this study is to develop a method that is able to realize autonomous traveling for tractor-like robot on the slope terrain. A neural network (NN) and genetic algorithms (GAs) have been used for resolving nonlinear problems in this system. The NN is applied to create a vehicle simulator that is capable to describe the motion of the tractor robot on the slope, while it is impossible by the common dynamics way. Using this vehicle simulator, a control law optimized by GAs was established and installed in the computer to control the steering wheel of tractor robot. The autonomous traveling carried out on a 14-degree slope had initial successful results.

  • PDF

Recognition of Road Direction for Magnetic Sensor Based Autonomous Vehicle (자기센서 기반 자율주행차량의 도로방향 인식)

  • 유영재;김의선;김명준;임영철
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.9
    • /
    • pp.526-532
    • /
    • 2003
  • This paper describes a recognition method of a road direction for an autonomous vehicle based on magnetic sensors. Using the sensors mounted on a vehicle and the magnetic markers embedded along the center of road, the autonomous vehicle can recognize a road direction and control a steering angle. Using the front lateral deviation of a vehicle and the rear one, the road direction is calculated. The analysis of magnetic field, the acquisition technique of training data, the training method of neural network and the computer simulation are presented. According to the computer simulation, the proposed method is simulated, and its performance is verified. Also, the experimental test is confirmed its reliability.

Development of Control System for Autonomous Parallel Parking (자율적 평행주차 제어시스템의 개발)

  • 손민혁;부광석;송정훈;김흥섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.176-182
    • /
    • 2003
  • The researches for autonomous vehicle have been implemented in many studies, but most studies were confined to the lane fol1owing and changing. This paper addresses a problem of autonomous lane following parking a nonholonomic vehicle. The algorithm for image processing by the hough transform and controlling a steering angle and speed to park a nonholonomic vehicle is developed. The developed system which integrated the control algorithm for parking and vision algorithm for line traction tested with RC car and verified by the performance of the detection of parking area and the reactive parking without collisions.

A steering control method for wheel-driven mobile robot (휠구동방식의 자유이동로봇을 위한 조향제어방법)

  • 고경철;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.787-792
    • /
    • 1991
  • This paper proposes a steering control algorithm for non-holonomic mobile robots. The steering control algorithm is essential to navigate autonomous vehicles which employ comination of the dead reckoning and absolute sensor system such as a machine vison for detecting landmarks in order to estimate the current location of the mobile robot. The proposed algorithm is based on the minimum time BANG-BANG controller and curvature-continuity curve design method. In the BANG-BANG control scheme we introduce velocity/acceleration limiter to avoid any slippage of driving wheels. The proposed scheme is robot-independent and hence can be applied to various kinds of mobile robot or vehicles. To show the effectness of the proposed control algorithm, a series of computer simulations were conducted for two-wheel driven mobile robot.

  • PDF