• Title/Summary/Keyword: automorphisms of K3 surfaces

Search Result 5, Processing Time 0.016 seconds

CLASSIFICATION OF ORDER SIXTEEN NON-SYMPLECTIC AUTOMORPHISMS ON K3 SURFACES

  • Tabbaa, Dima Al;Sarti, Alessandra;Taki, Shingo
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1237-1260
    • /
    • 2016
  • In the paper we classify complex K3 surfaces with non-symplectic automorphism of order 16 in full generality. We show that the fixed locus contains only rational curves and points and we completely classify the seven possible configurations. If the Picard group has rank 6, there are two possibilities and if its rank is 14, there are five possibilities. In particular if the action of the automorphism is trivial on the Picard group, then we show that its rank is six.

AUTOMORPHISMS OF K3 SURFACES WITH PICARD NUMBER TWO

  • Kwangwoo Lee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1427-1437
    • /
    • 2023
  • It is known that the automorphism group of a K3 surface with Picard number two is either an infinite cyclic group or an infinite dihedral group when it is infinite. In this paper, we study the generators of such automorphism groups. We use the eigenvector corresponding to the spectral radius of an automorphism of infinite order to determine the generators.

SOME REMARKS ON NON-SYMPLECTIC AUTOMORPHISMS OF K3 SURFACES OVER A FIELD OF ODD CHARACTERISTIC

  • Jang, Junmyeong
    • East Asian mathematical journal
    • /
    • v.30 no.3
    • /
    • pp.321-326
    • /
    • 2014
  • In this paper, we present a simple proof of Corollary 3.3 in [5] using the fact that for a K3 surface of finite height over a field of odd characteristic, the height is a multiple of the non-symplectic order. Also we prove for a non-symplectic CM K3 surface defined over a number field the Frobenius invariant of the reduction over a finite field is determined by the congruence class of residue characteristic modulo the non-symplectic order of the K3 surface.

EQUIDISTRIBUTION OF PERIODIC POINTS OF SOME AUTOMORPHISMS ON K3 SURFACES

  • Lee, Chong-Gyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.307-317
    • /
    • 2012
  • We say (W, {${\phi}_1,\;{\ldots}\;,{\phi}_t$}) is a polarizable dynamical system of several morphisms if ${\phi}_i$ are endomorphisms on a projective variety W such that ${\otimes}{\phi}_i^*L$ is linearly equivalent to $L^{{\otimes}q}$ for some ample line bundle L on W and for some q > t. If q is a rational number, then we have the equidistribution of small points of given dynamical system because of Yuan's work [13]. As its application, we can build a polarizable dynamical system of an automorphism and its inverse on a K3 surface and can show that its periodic points are equidistributed.