Browse > Article
http://dx.doi.org/10.4134/JKMS.2011.48.4.797

THE CLASSIFICATION OF LOG ENRIQUES SURFACES OF RANK 18  

Wang, Fei (Department of Mathematics National University of Singapore)
Publication Information
Journal of the Korean Mathematical Society / v.48, no.4, 2011 , pp. 797-822 More about this Journal
Abstract
Log Enriques surface is a generalization of K3 and Enriques surface. We will classify all the rational log Enriques surfaces of rank 18 by giving concrete models for the realizable types of these surfaces.
Keywords
automorphisms of K3 surfaces; log Enriques surfaces; quotient singularities;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546-604.   DOI
2 K. Oguiso and D.-Q. Zhang, On extremal log Enriques surfaces. II, Tohoku Math. J. (2) 50 (1998), no. 3, 419-436.   DOI
3 K. Oguiso and D.-Q. Zhang, On the complete classification of extremal log Enriques surfaces, Math. Z. 231 (1999), no. 1, 23-50.   DOI
4 T. Shioda and H. Inose, On singular K3 surfaces, Complex analysis and algebraic geom- etry, pp. 119-136. Iwanami Shoten, Tokyo, 1977.
5 T. Shioda and H. Inose, On the most algebraic K3 surfaces and the most extremal log Enriques surfaces, Amer. J. Math. 118 (1996), no. 6, 1277-1297.   DOI
6 K. Ueno, A remark on automorphisms of Enriques surfaces, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 23 (1976), no. 1, 149-165.
7 D.-Q. Zhang, Logarithmic Enriques surfaces, J. Math. Kyoto Univ. 31 (1991), no. 2, 419-466.   DOI
8 D.-Q. Zhang, Logarithmic Enriques surfaces. II, J. Math. Kyoto Univ. 33 (1993), no. 2, 357- 397.   DOI
9 M. F. Atiyah and G. B. Segal, The index of elliptic operators. II, Ann. of Math. (2) 87 (1968), 531-545.   DOI