THE CLASSIFICATION OF LOG ENRIQUES SURFACES OF RANK 18

Fei Wang

Abstract

Log Enriques surface is a generalization of K3 and Enriques surface. We will classify all the rational log Enriques surfaces of rank 18 by giving concrete models for the realizable types of these surfaces

1. Introduction

A normal projective surface Z with at worst quotient singularities is called a logarithmic (abbr. log) Enriques surface if its canonical Weil divisor K_{Z} is numerically equivalent to zero, and if its irregularity $\operatorname{dim} H^{1}\left(Z, \mathcal{O}_{Z}\right)=0$. By the abundance for surfaces, $K_{Z} \sim_{\mathbb{Q}} 0$.

Let Z be a \log Enriques surface and define

$$
I:=I(Z)=\min \left\{n \in \mathbb{Z}^{+} \mid \mathcal{O}_{Z}\left(n K_{Z}\right) \simeq \mathcal{O}_{Z}\right\}
$$

to be the canonical index of Z. The canonical cover of Z is defined as

$$
\pi: \bar{S}:=\operatorname{Spec}_{\mathcal{O}_{Z}}\left(\bigoplus_{j=0}^{I-1} \mathcal{O}_{Z}\left(-j K_{Z}\right)\right) \rightarrow Z
$$

This is a Galois $\mathbb{Z} / I \mathbb{Z}$-cover. So $\bar{S} /(\mathbb{Z} / I \mathbb{Z})=Z$.
Note that a \log Enriques surface is irrational if and only if it is a K3 or Enriques surface with at worst Du Val singularities (cf. [8, Proposition 1.3]). More precisely, a log Enriques surface of index one is a K3 surface with at worst Du Val singularities, and a log Enriques surface of index two is an Enriques surface with at worst Du Val singularities or a rational surface. Therefore, the \log Enriques surfaces can be viewed as generalizations of K3 surfaces and Enriques surfaces. More results about the canonical indices are studied in [8] and [9].

If a \log Enriques surface Z has Du Val singularities, let $\widetilde{Z} \rightarrow Z$ be the partial minimal resolution of all Du Val singularities of Z, then \widetilde{Z} is again a

[^0]\log Enriques surface of the same canonical index as Z. Therefore, we assume throughout this paper that Z has no Du Val singularities; otherwise we consider \widetilde{Z} instead.

By the definition of the canonical cover and the classification result of surfaces, we have the following (cf. [8]).

1. \bar{S} has at worst Du Val singularities, and its canonical divisor $K_{\bar{S}}$ is linearly equivalent to zero. So \bar{S} is either an abelian surface or a projective K3 surface with at worst Du Val singularities.
2. $\pi: \bar{S} \rightarrow Z$ is a finite, cyclic Galois cover of degree $I=I(Z)$, and it is étale over $Z \backslash \operatorname{Sing} Z$.
3. $\operatorname{Gal}(\bar{S} / Z) \simeq \mathbb{Z} / I \mathbb{Z}$ acts faithfully on $H^{0}\left(\mathcal{O}_{\bar{S}}\left(K_{\bar{S}}\right)\right)$. In other words, there is a generator g of $\operatorname{Gal}(\bar{S} / Z)$ such that $g^{*} \omega_{\bar{S}}=\zeta_{I} \omega_{\bar{S}}$, where ζ_{I} is the I th primitive root of unity and $\omega_{\bar{S}}$ is a nowhere vanishing regular 2-form on \bar{S}.

Suppose Sing $\bar{S} \neq \emptyset$. Let $\nu: S \rightarrow \bar{S}$ be the minimal resolution of \bar{S}, and Δ_{S} the exceptional divisor of ν. Then Δ_{S} is a disconnected sum of divisors of Dynkin's type:

$$
\left(\oplus A_{\alpha}\right) \oplus\left(\oplus D_{\beta}\right) \oplus\left(\oplus E_{\gamma}\right)
$$

Note that S is a K3 surface. The Chern map $c_{1}: \operatorname{Pic}(S) \rightarrow H^{2}(S, \mathbb{Z})$ is injective. So $\operatorname{Pic}(S)$ is mapped isomorphically onto the Neron-Severi group NS (S). We can therefore define the rank of Δ_{S} to be the rank of the sublattice of the Néron Severi lattice $\mathrm{NS}(S) \simeq \operatorname{Pic}(S)$ generated by the irreducible components of Δ_{S}. In other words,

$$
\operatorname{rank} \Delta_{S}=\sum \alpha+\sum \beta+\sum \gamma
$$

Moreover, let $\rho(S):=\operatorname{rank} \operatorname{Pic}(S)$ be the Picard number of S, then

$$
\operatorname{rank} \Delta_{S} \leq \rho(S)-1 \leq 20-1=19
$$

Since S is uniquely determined up to isomorphism, by abuse of language we also say Z is of type $\left(\oplus A_{\alpha}\right) \oplus\left(\oplus D_{\beta}\right) \oplus\left(\oplus E_{\gamma}\right)$, and call rank Δ_{S} the rank of Z.

A rational \log Enriques surface Z is called extremal if it is of rank 19, the maximal possible value 19. The extremal \log Enriques surfaces are completely classified in [4]. In [3], the isomorphism classes of rational log Enriques surfaces of type A_{18} and D_{18} are determined. In this paper, we are going to classify all the rational \log Enriques surfaces of rank 18 by proving the following theorem.

Main Theorem. Let Z be a rational log Enriques surfaces of rank 18 without Du Val singularities. Let $\bar{S} \rightarrow Z$ be the canonical cover, and $S \rightarrow \bar{S}$ the minimal resolution with exceptional divisor Δ_{S}. Then we have the following assertions.

1) The canonical index $I(Z)=2,3$ or 4 .
2) If $I(Z)=2$, then $(S, g) \simeq\left(S_{2}, g_{2}\right)$, and Δ_{S} is of one of the following 5 types:

$$
A_{1} \oplus A_{17}, \quad A_{3} \oplus A_{15}, \quad A_{5} \oplus A_{13}, \quad A_{7} \oplus A_{11}, \quad A_{9} \oplus A_{9}
$$

Moreover, all of them are realizable.
3) If $I(Z)=3$, then $(S, g) \simeq\left(S_{3}, g_{3}\right)$, and Δ_{S} is of one of the 48 possible types in Table 1, and from which 40 types have been realized.
4) If $I(Z)=4$, then $\left(S, g^{2}\right) \simeq\left(S_{2}, g_{2}\right)$, and Δ_{S} is of one of the following 3 types:

$$
A_{1} \oplus A_{17}, \quad A_{5} \oplus A_{13}, \quad A_{9} \oplus A_{9} .
$$

Moreover, all of them are realizable.
5) For each of the possible cases in (2) and (3), every irreducible curve in Δ_{S} is g-stable, and the action of g on Δ is uniquely determined, which are given in Table 2 and 1, respectively.
Here $\left(S_{2}, g_{2}\right)$ (Definition 6) and $\left(S_{3}, g_{3}\right)$ (Definition 3) are the Shioda-Inose's pairs of discriminants 4 and 3 respectively.

2. Preliminaries

Definition 1. Let Z be a normal projective surface defined over the complex number field \mathbb{C}. It is called a log Enriques surface of canonical index I if

1) Z has at worst quotient singularities, and
2) $I K_{Z}$ is linearly equivalent to zero for the minimum positive integer I, and
3) the irregularity $q(Z):=\operatorname{dim} H^{1}\left(Z, \mathcal{O}_{Z}\right)=0$.

We will use the following notations in Section 3-4.

1. For each $I \in \mathbb{Z}^{+}, \zeta_{I}=\exp (2 \pi \sqrt{-1} / I)$, a primitive I th root of unity.
2. Let X be a variety, and G an automorphism group on X. For each $g \in X$, denote the fixed locus by $X^{g}=\{x \in X \mid g(x)=x\}$. Set $X^{[G]}=\bigcup_{g \in G \backslash\{\mathrm{id}\}} X^{g}$.
3. Let S be a surface and g an automorphism on S. A curve C on S is called g-stable if $g(C)=C$, and it is called g-fixed if $g(x)=x$ for every $x \in C$. A point $x \in S$ is an isolated g-fixed point if $g(x)=x$ and it is not contained in any g-fixed curve.

3. Log Enriques surfaces from Shioda-Inose's pairs

In this section, we assume that Z is a rational \log Enriques surface of rank 18 and canonical index I without Du Val singularities. Let $\pi: \bar{S} \rightarrow Z$ be the canonical cover of Z, and $\nu: S \rightarrow \bar{S}$ the minimal resolution of \bar{S} with exceptional divisor Δ_{S}. Then

$$
20 \geq \rho(S) \geq \operatorname{rank} \Delta_{S}+1=19
$$

Recall that S is a K3 surface. Let T_{S} denote the transcendental lattice of S, i.e., the orthogonal complement of $\operatorname{Pic}(S)$ in $H^{2}(S, \mathbb{Z})$. Then

$$
\operatorname{rank} T_{S}=\operatorname{dim} H^{2}(S, \mathbb{Z})-\rho(S)=22-\rho(S)=2 \text { or } 3
$$

Let g be the automorphism on S induced by a generator of $\operatorname{Gal}(\bar{S} / Z)$, and ω_{S} a nowhere vanishing holomorphic 2-form on S. Then $g^{*} \omega_{S}=\zeta_{I} \omega_{S}$. Note
that $\omega_{S} \in T_{S} \otimes \mathbb{C}$. So ζ_{I} is an eigenvalue of g^{*} acting on T_{S}. Therefore, $\varphi(I) \leq \operatorname{rank} T_{S} \leq 3$, where φ is Euler's phi function. It follows that:
Lemma 2. The canonical index $I(Z)=2,3,4$ or 6 .
We have indicated that all the realizable rational \log Enriques surfaces listed in Main Theorem can be constructed from the Shioda-Inose's pairs $\left(S_{2}, g_{2}\right)$ or $\left(S_{3}, g_{3}\right)$ (cf. [5]). Precisely, if $I(Z)=2$, then $(S, g) \simeq\left(S_{2}, g_{2}\right)$; if $I(Z)=3$, then $(S, g) \simeq\left(S_{3}, g_{3}\right)$; if $I(Z)=4$, then $\left(S, g^{2}\right) \simeq\left(S_{2}, g_{2}\right)$; we will also show that $I \neq 6$.

Definition 3. Let $\zeta_{3}:=\exp (2 \pi \sqrt{-1} / 3)$, and $E_{\zeta_{3}}:=\mathbb{C} /\left(\mathbb{Z}+\mathbb{Z} \zeta_{3}\right)$ the elliptic curve of period ζ_{3}. Let $\bar{S}_{3}:=E_{\zeta_{3}}^{2} /\left\langle\operatorname{diag}\left(\zeta_{3}, \zeta_{3}^{2}\right)\right\rangle$ be the quotient surface, and $S_{3} \rightarrow \bar{S}_{3}$ the minimal resolution of \bar{S}_{3}. Let g_{3} be the automorphism of S_{3} induced by the action $\operatorname{diag}\left(\zeta_{3}, 1\right)$ on $E_{\zeta_{3}}^{2}$. Then $\left(S_{3}, g_{3}\right)$ is called the ShiodaInose's pair of discriminant 3 .

Figure 1. $\left(S_{3}, g_{3}\right)$
It is proved in [6] and [4] that:
Proposition 4. Let $\left(S_{3}, g_{3}\right)$ be the Shioda-Inose's pair of discriminant 3. Then

1) S_{3} contains 24 rational curves: F_{1}, F_{2}, F_{3} coming from $\left(E_{\zeta_{3}}\right)^{\zeta_{3}} \times E_{\zeta_{3}}$; G_{1}, G_{2}, G_{3} coming from $E_{\zeta_{3}} \times\left(E_{\zeta_{3}}\right)^{\zeta_{3}}$; and $E_{i j}, E_{i j}^{\prime}(i, j=1,2,3)$ the exceptional curves arising from the 9 Du Val singular points of \bar{S}_{3} (Figure. 1);
2) $g_{3}^{*} \omega_{S_{3}}=\zeta_{3} \omega_{3}$, where $\omega_{S_{3}}$ is a nowhere vanishing holomorphic 2-form on S_{3}, and $\left.g_{3}^{*}\right|_{\operatorname{Pic}\left(S_{3}\right)}=\mathrm{id}$; so each of the 24 curves is g_{3}-stable;
3) $S_{3}^{g_{3}}=\left(\coprod_{i=1}^{3} F_{i}\right) \coprod\left(\coprod_{j=1}^{3} G_{j}\right) \coprod\left(\coprod_{i, j=1}^{3}\left\{P_{i j}\right\}\right)$, where $\left\{P_{i j}\right\}=E_{i j} \cap E_{i j}^{\prime}$;
4) $g_{3} \circ \varphi=\varphi \circ g_{3}$ for all $\varphi \in \operatorname{Aut}\left(S_{3}\right)$.

Proposition 5. Let (S, g) be a pair of a smooth K3 surface S and an automorphism of g on S. Assume that

1) $g^{3}=\mathrm{id}$, the identity on S;
2) $g^{*} \omega_{S}=\zeta_{3} \omega_{S}$, where ω_{S} is a nowhere vanishing holomorphic 2-form on S;
3) S^{g} consists of only rational curves and isolated points;
4) S^{g} contains at least 6 rational curves.

Then $(S, g) \simeq\left(S_{3}, g_{3}\right)$. Moreover, S^{g} consists of exactly 6 rational curves and 9 isolated points.
Definition 6. Let $E_{\zeta_{4}}:=\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \sqrt{-1})$ be the elliptic curve of period $\zeta_{4}=$ $\sqrt{-1}$. Let $\bar{S}_{2}:=E_{\zeta_{4}}^{2} /\left\langle\operatorname{diag}\left(\zeta_{4}, \zeta_{4}^{3}\right)\right\rangle$ be the quotient surface and $S_{2} \rightarrow \bar{S}_{2}$ the minimal resolution of \bar{S}_{2}. Let g_{2} be the involution of S_{2} induced by the action $\operatorname{diag}(-1,1)$ on $E_{\zeta_{4}}^{2}$. Then $\left(S_{2}, g_{2}\right)$ is called the Shioda-Inose's pair of discriminant 4.

Figure 2. $\left(S_{2}, g_{2}\right)$

It is also proved in [6] and [4] that:
Proposition 7. Let $\left(S_{2}, g_{2}\right)$ be the Shioda-Inose's pair of discriminant 4. Then

1) S_{2} contains 24 rational curves: F_{1}, F_{2}, F_{3} coming from $\left(E_{\zeta_{4}}{ }^{\left[\left\langle\zeta_{4}\right\rangle\right]} \times E_{\zeta_{4}}\right.$; G_{1}, G_{2}, G_{3} coming from $E_{\zeta_{4}} \times\left(E_{\zeta_{4}}\right)^{\left[\left\langle\zeta_{4}\right\rangle\right]}$; and $E_{i j}^{\prime}+H_{i j}+E_{i j}, i, j \in\{1,3\}$, the exceptional curves arising from the 4 Du Val singular points of Dynkin type A_{3}; and $E_{12}, E_{22}, E_{32}, E_{21}^{\prime}, E_{22}^{\prime}, E_{23}^{\prime}$, the exceptional curves arising from the 6 Du Val singular points of Dynkin type A_{1} (Figure. 2);
2) $g_{2}^{*} \omega_{S_{2}}=-\omega_{S_{2}}$, where $\omega_{S_{2}}$ is a nowhere vanishing holomorphic 2 -form on S_{2}, and $\left.g_{2}^{*}\right|_{\operatorname{Pic}(S)}=\mathrm{id}$; so each of the 24 curves is g_{2}-stable;
3) $S_{2}^{g_{2}}=\left(\coprod_{i=1}^{3} F_{i}\right) \coprod\left(\coprod_{j=1}^{3} G_{j}\right) \coprod\left(\coprod_{i, j \in\{1,3\}} H_{i j}\right)$;
4) $g_{2} \circ \varphi=\varphi \circ g_{2}$ for all $\varphi \in \operatorname{Aut}\left(S_{2}\right)$.

Proposition 8. Let (S, g) be a pair of a smooth $K 3$ surface S and an automorphism g of S. Assume that

1) $g^{2}=\mathrm{id}$, the identity on S;
2) $g^{*} \omega_{S}=-\omega_{S}$, where ω_{S} is a nowhere vanishing holomorphic 2-form on S;
3) S^{g} consists of only rational curves;
4) S^{g} contains at least 10 rational curves.

Then $(S, g) \simeq\left(S_{2}, g_{2}\right)$. Moreover, S^{g} consists of exactly 10 rational curves.

4. The classification

In this section, we assume that Z is a \log Enriques surface of rank 18 without Du Val singularities. Let $\pi: \bar{S} \rightarrow Z$ be the canonical cover, and $\nu: S \rightarrow \bar{S}$ the minimal resolution with exceptional divisor $\Delta:=\Delta_{S}$. Since the canonical cover $\bar{S} \rightarrow Z$ is unramified in codimension one, every curve in $S^{[\langle g\rangle]}$ is contained in Δ. In particular, $S^{[\langle g\rangle]}$ consists of only smooth rational curves and a finite number of isolated points, and Δ is g-stable.

In general, let S be a K3 surface, and g an automorphism of S of order n. Let T_{S} be its transcendental lattice. Note that g induces actions g^{*} on $\operatorname{Pic}(S) \otimes \mathbb{C}$ and on $T_{S} \otimes \mathbb{C}$. Since $g^{n}=\mathrm{id}$, these actions are diagonalizable and every eigenvalue of g^{*} is an nth root of unity, say ζ_{n}^{i} for some $0 \leq i<n$. Since g^{*} is well-defined on $\operatorname{Pic}(S)$ and T_{S}, the number of eigenvalues ζ_{n}^{i} of $\left.g^{*}\right|_{\operatorname{Pic}(S) \otimes \mathbb{C}}$ and $\left.g^{*}\right|_{T_{S} \otimes \mathbb{C}}$ equals to that of the conjugate eigenvalues $\bar{\zeta}_{n}^{i}$, respectively. By noting that $\operatorname{dim} H^{2}(S, \mathbb{C})=22$, we have the following lemma:

Lemma 9 ([6, Lemma 2.0]). With the notations above, let t_{0} and r_{0} be the rank of the invariant lattices $(\operatorname{Pic}(S))^{g^{*}}$ and $\left(T_{S}\right)^{g^{*}}$, respectively. Let I_{s} denote the identity matrix of size s.

1) If $n=2 k+1$ is odd, then $\rho(S)=t_{0}+2 \sum_{i=1}^{k} t_{i}$ and

$$
\left.g^{*}\right|_{\operatorname{Pic}(S) \otimes \mathbb{C}}=\operatorname{diag}\left(I_{t_{0}}, \zeta_{n} I_{t_{1}}, \bar{\zeta}_{n} I_{t_{1}}, \zeta_{n}^{2} I_{t_{2}}, \bar{\zeta}_{n}^{2} I_{t_{2}}, \ldots, \zeta_{n}^{k} I_{t_{k}}, \bar{\zeta}_{n}^{k} I_{t_{k}}\right)
$$

$$
\left.g^{*}\right|_{T_{S} \otimes \mathbb{C}}=\operatorname{diag}\left(I_{r_{0}}, \zeta_{n} I_{r_{1}}, \bar{\zeta}_{n} I_{r_{1}}, \zeta_{n}^{2} I_{r_{2}}, \bar{\zeta}_{n}^{2} I_{r_{2}}, \ldots, \zeta_{n}^{k} I_{r_{k}}, \bar{\zeta}_{n}^{k} I_{r_{k}}\right),
$$

$$
\text { and } t_{0}+r_{0}+2 \sum_{i=1}^{k} t_{i}+2 \sum_{i=1}^{k} r_{i}=22
$$

2) If $n=2 k$ is even, then $\rho(S)=t_{0}+2 \sum_{i=1}^{k-1} t_{i}+t_{k}$ and

$$
\begin{aligned}
\left.\left.g^{*}\right|_{\operatorname{Pic}(S)}\right) \otimes \mathbb{C} & =\operatorname{diag}\left(I_{t_{0}}, \zeta_{n} I_{t_{1}}, \bar{\zeta}_{n} I_{t_{1}}, \zeta_{n}^{2} I_{t_{2}}, \bar{\zeta}_{n}^{2} I_{t_{2}}, \ldots, \zeta_{n}^{k-1} I_{t_{k-1}}, \bar{\zeta}_{n}^{k-1} I_{t_{k-1}},-I_{t_{k}}\right), \\
\left.g^{*}\right|_{T_{S}} \otimes \mathbb{C} & =\operatorname{diag}\left(I_{r_{0}}, \zeta_{n} I_{r_{1}}, \bar{\zeta}_{n} I_{r_{1}}, \zeta_{n}^{2} I_{r_{2}}, \bar{\zeta}_{n}^{2} I_{r_{2}}, \ldots, \zeta_{n}^{k-1} I_{r_{k-1}}, \bar{\zeta}_{n}^{k-1} I_{r_{k-1}},-I_{r_{k}}\right), \\
\text { and } t_{0} & +r_{0}+2 \sum_{i=1}^{k-1} t_{i}+2 \sum_{i=1}^{k} r_{i}+t_{k}+r_{k}=22 .
\end{aligned}
$$

4.1. Classification when $I=3$

Let (S, g) be a pair of smooth K3 surface S and an automorphism g of S. We assume that $g^{*} \omega_{S}=\zeta_{3} \omega_{S}$ for a nowhere vanishing holomorphic 2-form ω_{S} on S.

Let P be an isolated g-fixed point on S. Then g^{*} can be written as $\operatorname{diag}\left(\zeta_{3}^{a}, \zeta_{3}^{b}\right)$ for some $a, b \in\{1,2\}$ with $a+b \equiv 1(\bmod 3)$ under some appropriate local coordinates around P because $g^{*} \omega_{S}=\zeta_{3} \omega_{S}$. We see that $a=b=2$ and the action is $\operatorname{diag}\left(\zeta_{3}^{2}, \zeta_{3}^{2}\right)$. If C is a g-fixed irreducible curve and $Q \in C$, then it also follows from $g^{*} \omega_{S}=\zeta_{3} \omega_{S}$ that g^{*} can be written as $\operatorname{diag}\left(1, \zeta_{3}\right)$ under some appropriate local coordinates around Q. In particular, the g-fixed curves are smooth and mutually disjoint.

We need to use the following lemma in the classification for $I=3$.
Lemma 10 ("Three Go" Lemma, [6, Lemma 2.2]). Let (S, g) be a pair of smooth K3 surface S and an automorphism g of S. Assume that $g^{3}=\mathrm{id}$ and $g^{*} \omega_{S}=\zeta_{3} \omega_{S}$.

1) Let $C_{1}-C_{2}-C_{3}$ be a linear chain of g-stable smooth rational curves. Then exactly one of C_{i} is g-fixed.
2) Let C be a g-stable but not g-fixed smooth rational curve. Then there is a unique g-fixed curve D such that $C \cdot D=1$.
3) Let M and N be the number of smooth rational curves and the number of isolated points in S^{g}, respectively. Then $M-N=3$.

Suppose $I(Z)=3$. Then the associated pair (S, g) satisfies the conditions in Lemma 10. We first determine a possible list of the Dynkin's types of Δ.

Proposition 11. With the notations as in Main Theorem, suppose $I(Z)=3$. Then $(S, g) \simeq\left(S_{3}, g_{3}\right)$, the Shioda-Inose's pair of discriminant 3. Moreover, Δ is of one of the following 13 types:
I. A_{18};
II. D_{18};

$$
\begin{aligned}
& \text { III. } A_{3 m} \oplus A_{3 n}, \quad m+n=6 \text {; } \\
& \text { IV. } D_{3 m} \oplus A_{3 n}, \quad m+n=6 \text {; } \\
& \text { V. } D_{3 m} \oplus D_{3 n}, \quad m+n=6 \text {; } \\
& \text { VI. } D_{3 m+1} \oplus A_{3 n-1}, \quad m+n=6 \text {; } \\
& \text { VII. } A_{3 m} \oplus A_{3 n} \oplus A_{3 r}, \quad m+n+r=6 \text {; } \\
& \text { VIII. } D_{6} \oplus D_{6} \oplus D_{6} \text {; } \\
& \text { IX. } A_{3 m} \oplus D_{3 n} \oplus D_{3 r}, \quad m+n+r=6 \text {; } \\
& \text { X. } A_{3 m} \oplus A_{3 n} \oplus D_{3 r}, \quad m+n+r=6 \text {; } \\
& \text { XI. } D_{3 m+1} \oplus A_{3 n} \oplus A_{3 r-1}, \quad m+n+r=6 \text {; } \\
& \text { XII. } D_{3 m+1} \oplus D_{3 n+1} \oplus A_{3 r-2}, \quad m+n+r=6 \text {; } \\
& \text { XIII. } D_{3 m+1} \oplus D_{3 n} \oplus A_{3 r-1}, \quad m+n+r=6 \text {. }
\end{aligned}
$$

Proof. Let Δ_{i} be a connected component of Δ.
Step 1: Δ_{i} is g-stable.
If Δ_{i} is not g-stable, then its image in Z would be a Du Val singular point since $I(Z)=3$ is a prime. However, we have assumed that Z has no Du Val singularities.

Step 2: $\Delta_{i}=A_{n}$ or D_{n}.
Suppose there is a $\Delta_{i}=E_{n}$ for some n. Let C be the center of Δ_{i}, and C_{1}, C_{2}, C_{3} the rational curves in Δ_{i} which intersect C. Suppose C_{1} is the twig of length one. By the uniqueness of C and C_{1}, they are g-stable. If C is not g-fixed, then $\Delta_{i}=E_{6}$ and g switches the other two twigs, which contradicts $g^{3}=$ id. If C is g-fixed, then each irreducible curve in Δ_{i} is g-stable. Let $C_{2}-C_{2}^{\prime}$ be a twig of Δ_{i}. Then C_{2}^{\prime} is not g-fixed and it does not intersect with any g-fixed curve, which contradicts Lemma 10.

Step 3. Every irreducible curve in Δ_{i} is g-stable.
i) Let $\Delta_{i}=A_{n}$. Write the irreducible curves in Δ_{i} as a chain $C_{1}-C_{2}-$ $\cdots-C_{n}$. For $n>1$, if C_{1} is not g-stable, we must have $g\left(C_{1}\right)=C_{n}$ and $g\left(C_{n}\right)=g\left(C_{1}\right)$, and this contradicts $g^{3}=\mathrm{id}$.
ii) Let $\Delta_{i}=D_{n}$. Then by the uniqueness its center C is g-stable. Let C_{1} and C_{2} be twigs of length one, and C_{3} the curve of another twig which intersects C.

Suppose $n>4$. Then every irreducible component in the longest twig shall be g-stable. If C_{1} is not g-stable, then $g\left(C_{1}\right)=C_{2}$ and $g\left(C_{2}\right)=C_{1}$, which contradicts $g^{3}=\mathrm{id}$. Thus, every irreducible curve in Δ_{i} is g-stable. Suppose $n=4$. If C_{1} is not g-stable, we must have $g\left(C_{1}\right)=C_{2}, g\left(C_{2}\right)=C_{3}$ and $g\left(C_{3}\right)=g\left(C_{1}\right)$. In particular, C is not g-fixed, and it does not intersect with any g-fixed curve. This contradicts Lemma 10. Therefore, C_{1} is g-stable. We see similarly as in the case $n>4$ that C_{2} and C_{3} are both g-stable.

Step 4. The g-fixed curves of Δ_{i} are described as follows.

We use " f " to denote g-fixed curves, and " s " to denote g-stable but not g-fixed curves in $\Delta_{i} . k$ is the number of g-fixed curves in Δ_{i}.
i) Suppose $\Delta_{i}=A_{n}$.
a) $n=3 k-2$:

$$
f-s-s-f-s-\cdots-s-s-f
$$

b) $n=3 k-1$:

$$
f-s-s-f-s-\cdots-s-f-s
$$

c) $n=3 k$:

$$
s-f-s-s-f-\cdots-s-f-s
$$

ii) Suppose $\Delta_{i}=D_{n}$.
a) $n=3 k$:

$$
s-\stackrel{s}{\mid}-s-s-f-\cdots-s-s-f
$$

b) $n=3 k+1$:

$$
\stackrel{s}{\mid} s-f-s-s-f-\cdots-s-f-s
$$

The case $\Delta_{i}=A_{n}$ follows from Lemma 10. Suppose $\Delta_{i}=D_{n}$. Then by Step 3, the center C is g-fixed. So in the longest twig $C_{3}-C_{4}-\cdots-C_{n-1}$ of Δ_{i}, by induction, $C_{3 j+2}$ are g-fixed and others are not. If $n=3 k+2$ for some k, then C_{n-2} and C_{n-1} are not g-fixed, and C_{n-1} does not intersect with any g-fixed curve, a contradiction to Lemma 10 . Therefore, $n \not \equiv 2(\bmod 3)$.

Step 5. $(S, g) \simeq\left(S_{3}, g_{3}\right)$.
Let M be the number of isolated g-fixed points and N the number of g-fixed curves in Δ. We can decompose

$$
\Delta=\bigoplus_{i=1}^{a} D_{3 \ell_{i}+1} \oplus \bigoplus_{i=1}^{b} D_{3 m_{i}} \oplus \bigoplus_{i=1}^{c} A_{3 p_{i}} \oplus \bigoplus_{i=1}^{d} A_{3 q_{i}-1} \oplus \bigoplus_{i=1}^{e} A_{3 r_{i}-2}
$$

Then

$$
\begin{aligned}
N & =\sum_{i=1}^{a} \ell_{i}+\sum_{i=1}^{b} m_{i}+\sum_{i=1}^{c} p_{i}+\sum_{i=1}^{d} q_{i}+\sum_{i=1}^{e} r_{i} \\
M & \geq \sum_{i=1}^{a}\left(\ell_{i}+2\right)+\sum_{i=1}^{b}\left(m_{i}+1\right)+\sum_{i=1}^{c}\left(p_{i}+1\right)+\sum_{i=1}^{d} q_{i}+\sum_{i=1}^{e}\left(r_{i}-1\right) \\
& =N+(2 a+b+c-e) .
\end{aligned}
$$

Thus, by Lemma $10,3=M-N \geq 2 a+b+c-e$. Recall that

$$
\begin{aligned}
\operatorname{rank} \Delta=18 & =\sum_{i=1}^{a}\left(3 \ell_{i}+1\right)+\sum_{i=1}^{b} 3 m_{i}+\sum_{i=1}^{c} 3 p_{i}+\sum_{i=1}^{d}\left(3 q_{i}-1\right)+\sum_{i=1}^{e}\left(3 r_{i}-2\right) \\
& =3 N+a-d-2 e
\end{aligned}
$$

Or equivalently, $N=6+\frac{-a+d+2 e}{3}$. If $N \leq 5$, then $a \geq d+2 e+3$, and we would have

$$
3 \geq 2 a+b+c-e \geq 2(d+2 e+3)+b+c-e=b+c+2 d+3 e+6 \geq 6
$$

Therefore, $N \geq 6$; and hence by Proposition $5, N=6$ and $M=9$. Furthermore, we have $(S, g) \simeq\left(S_{3}, g_{3}\right)$.

Step 6. Determine the Dynkin's type of Δ.
Solving the system

$$
d+2 e=a \quad \text { and } \quad 2 a+b+c-e \leq 3
$$

we have 13 nonnegative integer solutions. So there are 13 types of Δ as listed in Proposition 11.

To be more precise, we list all the 48 possible types of Δ in Table 1 in Section 5. Note that in Steps 3 and 4, we proved that each irreducible curve in Δg-stable, and the action of g on Δ is uniquely determined, which is also included in Table 1. The case $I=3$ for Main Theorem (5) is proved.

If Δ can be obtained from the $24 g$-stable rational curves in S_{3} (Figure 1) which contains the 6 g -fixed curves and satisfies the condition in the proof of Proposition 11 Step 4, let $S_{3} \rightarrow \bar{S}$ be the contraction of Δ, then the automorphism g_{3} on S_{3} induces an automorphism on \bar{S}. We see that $Z=\bar{S} /\left\langle g_{3}\right\rangle$ is a required \log Enriques surface of type Δ. By verification, 40 cases are realizable. The detailed list is given in Table 1(A). Thus, we have completed the proof of Main Theorem (3).

Unfortunately, the remaining 8 cases are not realizable by the 24 curves on S_{3}, which are given in Table 1(B). We are unable to determine their realizability.

4.2. Classification when $I=2$

Let (S, g) be a pair of a smooth K3 surface S and an automorphism g of S. We assume that $g^{*} \omega_{S}=-\omega_{S}$ for a nowhere vanishing holomorphic 2-form ω_{S} on S.

If $P \in S$ is an isolated g-fixed point, then g^{*} can be written as $\operatorname{diag}(-1,-1)$ under some appropriate local coordinates around P. However, this contradicts the assumption that $g^{*} \omega_{S}=-\omega_{S}$. So S has no isolated g-fixed point. Let C be a g-fixed irreducible curve and let $Q \in C$. Then g^{*} can be written as $\operatorname{diag}(1,-1)$ under some appropriate local coordinates around Q. So the g-fixed curves are smooth and mutually disjoint.

We need to use the following lemma in the classification.

Lemma 12 ("Two Go" Lemma, [6, Lemma 3.2]). Let (S, g) be a pair of smooth K3 surface and an automorphism g of S. Assume that $g^{2}=\mathrm{id}$ and $g^{*} \omega_{S}=$ $-\omega_{S}$.

1) If $C_{1}-C_{2}$ is a linear chain of g-stable smooth rational curves, then exactly one of C_{i} is g-fixed.
2) If C_{1} and C_{2} are g-stable but not g-fixed smooth rational curves, then $C_{1} \cdot C_{2}$ is even.
3) If C is a g-stable but not g-fixed smooth rational curve, then C has exactly $2 g$-fixed points.
Suppose $I(Z)=2$. Then the associated pair satisfies the conditions in Lemma 12. We can now determine the possible Dynkin's types of (S, g).

Proposition 13. With the notations as in Main Theorem. Suppose $I=2$. Then $(S, g) \simeq\left(S_{2}, g_{2}\right)$, the Shioda-Inose's pair of discriminant 4. Moreover, Δ is of the type $A_{2 m-1} \oplus A_{2 n-1}$, where $m+n=10$.
Proof. Since $I=2$ is a prime, each connected component Δ_{i} of Δ must be g-stable because Z is assumed to have no Du Val singular points.

Step 1. $\Delta_{i}=A_{n}$.
Suppose $\Delta_{i}=D_{n}$ or E_{n}. Let C be the center of Δ_{i}. Then C meets exactly 3 smooth rational curves in Δ_{i}, say C_{1}, C_{2}, C_{3}. By uniqueness, C is g-stable, and $g\left(\left\{C_{1}, C_{2}, C_{3}\right\}\right)=\left\{C_{1}, C_{2}, C_{3}\right\}$.

If every C_{j} is g-stable, then C has at least $3 g$-fixed points, and it is g-fixed. Hence, C_{j} are not g-fixed. On the other hand, each C_{j} contains two g-fixed points, and one of them is not in C. There would be another g-fixed curve C_{j}^{\prime} in Δ_{i} which intersects $C_{j}, j=1,2,3$, a contradiction. Suppose C_{1} is not g-stable, say $g\left(C_{1}\right)=C_{2}$. Then $g\left(C_{2}\right)=C_{1}$ and C is not g-fixed. Since C_{3} is g-stable, by Lemma 12 it is also g-fixed. However, one of the two g-fixed points on C is not contained in C_{3}, so C should intersect with another g-fixed curve in Δ_{i}, a contradiction again.

Therefore, we can express $\Delta_{i}=A_{n}$ as a linear chain of smooth rational curves: $C_{1}-C_{2}-\cdots-C_{n}$.

Step 2. Each C_{j} is g-stable.
Suppose $g\left(C_{1}\right) \neq C_{1}$. Then $g\left(C_{1}\right)=C_{n}$, and consequently $g\left(C_{j}\right)=C_{n-j}$ for all j. There are two cases.
i) If $m=2 k$, let $\{P\}=C_{k} \cap C_{k+1}$, then P would be an isolated g-fixed point, absurd.
ii) If $m=2 k-1$, then C_{k} is g-stable, and there would be a g-fixed curve which intersects C_{k}. But Δ_{i} contains no g-fixed curve, a contradiction.

Therefore, $g\left(C_{1}\right)=C_{1}$ and it follows that each C_{j} is g-stable.
Step 3. $\Delta_{i}=A_{2 m-1}$.
Note that each g-stable but not g-fixed curve must intersect g-fixed curves at two points. So C_{1} is g-fixed and C_{2} is not. Consequently, each $C_{2 j-1}$ is
g-fixed and $C_{2 j}$ is not. With the same reason, C_{n} must be g-fixed. So n is odd. Therefore, $\Delta_{i}=A_{n}$ has the form

$$
f-s-f-s-f-\cdots-f-s-f
$$

where " f " denotes the g-fixed curves and " s " denotes the g-stable but not g-fixed curves in Δ_{i}.

Step 4. Determine the Dynkin type of Δ.
Decompose $\Delta=\bigoplus_{i=1}^{r} A_{2 n_{i}-1}$. Recall that every smooth rational g-fixed curve in S is contained in Δ. Let N be the number of smooth rational g-fixed curves in S. Then $N=\sum_{i=1}^{r} n_{i}$ and

$$
18=\operatorname{rank} \Delta=\sum_{i=1}^{r}\left(2 n_{i}-1\right)=2 N-r .
$$

So we have

$$
N=\frac{18+r}{2}>9
$$

Then $N \geq 10$. It follows from Proposition 8 that $N=10$ and $(S, g) \simeq\left(S_{2}, g_{2}\right)$. Moreover, $r=2$. This completes the proof.

We have the following configurations for Δ :

$$
A_{1} \oplus A_{17}, \quad A_{3} \oplus A_{15}, \quad A_{5} \oplus A_{13}, \quad A_{7} \oplus A_{11}, \quad A_{9} \oplus A_{9}
$$

Similarly as in the case when $I=3$, if $S_{2}^{g} \subseteq \Delta$ and the divisor Δ can be obtained from the 24 smooth rational curves in S_{2} (Figure 2) which satisfies the conditions in the proof of Proposition 13 Step 3, let $S_{2} \rightarrow \bar{S}$ be the contraction of Δ, then the automorphism g_{2} on S_{2} induces an automorphism on \bar{S}, and $Z:=\bar{S} /\left\langle g_{2}\right\rangle$ is a required \log Enriques surface of Dynkin's type Δ.

We can easily verify that these 5 cases are all realizable (cf. Table 2). We have proved Main Theorem (2). By noting the results in Steps 2 and 3 in the proof of Proposition 13, Main Theorem (5) for case $I=2$ is also proved.

4.3. Classification when $I=4$

Let (S, g) be a pair of a smooth K3 surface S and an automorphism g of S. Assume that $g^{4}=\mathrm{id}$ and $g^{*} \omega_{S}=i \omega_{S}$ for a nowhere vanishing holomorphic 2-form on S, where $i=\sqrt{-1}$. Let P be an isolated g-fixed point. Then g^{*} can be written as $\operatorname{diag}(-1,-i)$ near P with appropriate coordinates. Let C be a g-fixed irreducible curve and Q a point in C. Then g^{*} can be written as $\operatorname{diag}(1, i)$ near Q with appropriate coordinates.

Similarly as in the case $I=2$ (Lemma 12) or $I=3$ (Lemma 10), we can state and prove the following lemma.

Lemma 14 ("Four Go" Lemma). Let (S, g) be a pair of smooth K3 surface S and an automorphism g of S. Assume that $g^{4}=\mathrm{id}$ and $g^{*} \omega_{S}=i \omega_{S}$.

1) Let $C_{1}-C_{2}-C_{3}-C_{4}$ be a chain of g-stable smooth rational curves. Then exactly one of C_{j} is g-fixed, and exactly one of C_{k} is g^{2}-fixed but not g-fixed. Moreover, $\{j, k\}=\{1,3\}$ or $\{2,4\}$.
2) Let C be a g-stable but not h-fixed smooth rational curve on S. Then there exists a unique g-fixed curve D_{1} and a unique g^{2}-fixed but not g fixed curve D_{2} such that $C \cdot D_{1}=C \cdot D_{2}=1$.
3) Let M and N be the number of smooth rational curves and the number of isolated points in S^{g}, respectively. Then $M-2 N=4$.

Proof. 1) Applying Lemma 12 to $h:=g^{2}$, we may assume that C_{1}, C_{3} are h-fixed and C_{2}, C_{4} are not. Note that $\{P\}=C_{1} \cap C_{2}$ and $\{Q\}=C_{2} \cap C_{3}$ are g-fixed. The action of g on the tangent space $T_{C_{2}, P}$ of C_{2} at P is the multiplicative of i or $-i$, and the action of g on $T_{C_{2}, Q}$ is the multiplicative of $-i$ or i, respectively. For the first case, C_{1} is g-fixed and C_{3} not; and conversely for the second case.
2) Let P and Q be the g-fixed points on C. Then the actions of g on $T_{C, P}$ and $T_{C, Q}$ are the multiplication of i and $-i$, respectively. So there is a unique g-fixed curve passing through P and a unique h-fixed but not g-fixed curve passing through Q.
3) We can write

$$
s^{9}=
$$

where P_{j} are the isolated g-fixed points, and C_{k} are the smooth irreducible rational g-fixed curves of S. Consider the holomorphic Lefschetz number $L(g)$, which can be evaluated in two different ways.

Method 1. $L(g)=\sum_{i=0}^{2}(-1)^{i} \operatorname{tr}\left(\left.g^{*}\right|_{H^{i}\left(S, \mathcal{O}_{S}\right)}\right)$ (cf. [1, §3]).
We see that $H^{0}\left(S, \mathcal{O}_{S}\right) \simeq \mathbb{C}, H^{1}\left(S, \mathcal{O}_{S}\right)=0$, and by Serre duality

$$
H^{2}\left(S, \mathcal{O}_{S}\right) \simeq H^{0}\left(S, \mathcal{O}_{S}\left(K_{S}\right)\right)^{\vee}=H^{0}\left(S, \mathcal{O}_{S}\right)^{\vee}
$$

Then $\left.g^{*}\right|_{H^{0}\left(S, \mathcal{O}_{S}\right)}=\mathrm{id},\left.g^{*}\right|_{H^{1}\left(S, \mathcal{O}_{S}\right)}=0$ and $\left.g^{*}\right|_{H^{2}\left(S, \mathcal{O}_{S}\right)}=i^{-1}=-i$.
Method 2. $L(g)=\sum_{j=1}^{M} a\left(P_{j}\right)+\sum_{k=1}^{N} b\left(C_{k}\right)$.

$$
\begin{aligned}
& a\left(P_{j}\right):: \frac{1}{\operatorname{det}\left(1-\left.g^{*}\right|_{T_{P_{j}}}\right)}, \\
& b\left(C_{k}\right):=\frac{1-\pi\left(C_{k}\right)}{1-\lambda_{k}^{-1}}-\frac{\lambda_{k}^{-1}}{\left(1-\lambda_{k}^{-1}\right)^{2}}\left(C_{k}\right)^{2},
\end{aligned}
$$

where $\pi\left(C_{k}\right)$ is the genus and $\left(C_{k}\right)^{2}$ is the self-intersection number of C_{k}, and λ_{k} is the eigenvalue of g^{*} on the normal bundle of C_{k} (cf. [2, §4]).

Recall that $\left.g^{*}\right|_{T_{P_{j}}}=\operatorname{diag}(-1,-i)$. Then

$$
a\left(P_{j}\right)=\frac{1}{(1+1)(1+i)}=\frac{1-i}{4}
$$

Since $\left.g^{*}\right|_{T_{Q_{k}}}=\operatorname{diag}(1, i)$ near $Q_{k} \in C_{k}, \lambda_{k}=i^{-1}$ is the eigenvalue of g^{*} on the normal bundle. So

$$
b\left(C_{k}\right)=\frac{1-0}{1-i}-\frac{i}{(1-i)^{2}}(-2)=-\frac{1-i}{2} .
$$

Therefore, $1-i=\frac{M}{4}(1-i)-\frac{N}{2}(1-i)$; that is, $M-2 N=4$.
Now suppose $I(Z)=4$. Then the associated pair (S, g) satisfies the conditions in Lemmas 9 and 14. Set $h:=g^{2}$. First of all, we claim that:

Lemma 15. With the notations as in Main Theorem and above, each connected component Δ_{i} of Δ is h-stable.

Proof. Suppose Δ_{i} is not h-stable. Then $\Delta_{i}, g\left(\Delta_{i}\right), h\left(\Delta_{i}\right)$ and $g^{3}\left(\Delta_{i}\right)$ are distinct components in Δ, and they are contracted to Du Val singular points on $\bar{S} /\langle g\rangle$, a contradiction to our assumption.

Therefore, applying Proposition 8 to (S, h) we have $(S, h) \simeq\left(S_{2}, g_{2}\right)$, the Shioda-Inose's pair of discriminant 4. From now on, we set $(S, h)=\left(S_{2}, g_{2}\right)$. Since is known that $\left(g_{2}^{*}\right)^{2}=\operatorname{id}$ on $\operatorname{Pic}(S)$, we can write $\left.g^{*}\right|_{\operatorname{Pic}(S) \otimes \mathbb{C}}=\operatorname{diag}\left(I_{s},-I_{t}\right)$, where $s+t=\rho(S)=20$. Let $x \in T_{S}$. Suppose $g^{*} x= \pm x$. Then

$$
x \cdot \omega_{S}=g^{*}\left(x \cdot \omega_{S}\right)=g^{*} x \cdot g^{*} \omega_{S}= \pm x \cdot i \omega_{S}= \pm i\left(x \cdot \omega_{S}\right)
$$

It follows that $x \cdot \omega_{S}=0$. Then $x \in \operatorname{Pic}(S) \cap T_{S}=\{0\}$. So ± 1 are not eigenvalues of $\left.g^{*}\right|_{T_{S} \otimes \mathbb{C}}$. By Lemma 9 , we can thus write $\left.g^{*}\right|_{T_{S} \otimes \mathbb{C}}=\operatorname{diag}(i,-i)$.

Proposition 16. With the notations as in Main Theorem. Suppose $I=4$. Let $h=g^{2}$. Then $(S, h) \simeq\left(S_{2}, g_{2}\right)$, the Shioda-Inose's pair of discriminant 4 . Moreover, Δ is of the type $A_{1} \oplus A_{17}, A_{5} \oplus A_{13}$ or $A_{9} \oplus A_{9}$.
Proof. We only need to check the second assertion. Let M be the number of isolated g-fixed points and N the number of smooth irreducible g-fixed curves. By Lemma 14, we have $M-2 N=4$.

Step 1. $N \leq 4$.
We apply the topological Lefschetz fixed point theorem (cf. [7, Lemma 1.6]),

$$
\chi_{\mathrm{top}}\left(S^{g}\right)=\sum_{i=0}^{4}(-1)^{i} \operatorname{tr}\left(\left.g^{*}\right|_{H^{i}(S, \mathbb{Q})}\right)
$$

The left-hand side is $M+2 N=4 N+4$, and the right-hand side is

$$
2+\operatorname{tr}\left(\left.g^{*}\right|_{\operatorname{Pic}(S) \otimes \mathbb{C}}\right)+\operatorname{tr}\left(\left.g^{*}\right|_{T_{S} \otimes \mathbb{C}}\right)=2+s-t .
$$

where $\left.g^{*}\right|_{\operatorname{Pic}(S) \otimes \mathbb{C}}=\operatorname{diag}\left(I_{s},-I_{t}\right)$. Since $s+t=\rho(S)=20$, we have

$$
s=11+2 N \quad \text { and } \quad t=9-2 N .
$$

It follows that $N \leq 4$.
Step 2. $\Delta=A_{2 m-1} \oplus A_{2 n-1}$, where $m+n=10$.
This follows immediately from Proposition 13.
Step 3. $\Delta \neq A_{3} \oplus A_{15}$ and $\Delta \neq A_{7} \oplus A_{11}$. So Proposition 16 will follow.
i) Suppose $\Delta=A_{3} \oplus A_{15}$. Denote $A_{3}=C_{1}-C_{2}-C_{3}$ and $A_{15}=D_{1}-D_{2}-$ $\cdots-D_{15}$. Then it follows from the proof of Proposition 13 that all C_{i} and D_{j} are h-stable, and from which

$$
C_{1}, C_{3}, D_{1}, D_{3}, D_{5}, D_{7}, D_{9}, D_{11}, D_{13}, D_{15}
$$

are h-fixed and others are not. Clearly each connected component is g-stable, and $\operatorname{Aut}(\Delta)=(\mathbb{Z} / 2 \mathbb{Z}) \oplus(\mathbb{Z} / 2 \mathbb{Z})$. Note that $g\left(C_{1}\right)=C_{1}$ or C_{3}. For each case C_{2} is g-stable but not h-fixed. By Lemma 14, C_{2} intersects with a unique g-fixed curve. Then C_{1} or C_{3} is g-stable, and therefore all C_{i} are g-stable. Similarly, by noting that D_{8} is g-stable but not h-fixed, we see that all D_{j} are g-stable. By Lemma 14 again, $C_{1}, D_{1}, D_{5}, D_{9}, D_{13}$ must be g-fixed. But this contradicts $N \leq 4$.
ii) Suppose $\Delta=A_{7} \oplus A_{11}$. Denote $A_{7}=C_{1}-C_{2}-\cdots-C_{7}$ and $A_{11}=$ $D_{1}-D_{2}-\cdots-D_{11}$. Then using the same argument as for $A_{3} \oplus A_{15}$, we can show that C_{i} and D_{j} are g-stable for all i, j, and therefore $C_{1}, C_{5}, D_{1}, D_{5}, D_{9}$ are g-fixed. This contradicts $N \leq 4$ again.

Proof of Main Theorem (4). It remains to show that $A_{1} \oplus A_{17}, A_{5} \oplus A_{13}$ and $A_{9} \oplus A_{9}$ are realizable.

Let g_{4} be the automorphism of S_{2} induced by the action $\operatorname{diag}(i, 1)$ on $E_{\zeta_{4}}^{2}$. Then $g_{4}^{2}=g_{2}$ as in Definition 6. From the construction of the 24 rational curves in S_{2} (Figure 2), we see that
I) 4 curves are g_{4}-fixed, say F_{1}, F_{2} and G_{1}, G_{3};
II) 6 curves are g_{2}-fixed but not g_{4}-fixed, say $F_{2}, G_{2}, H_{11}, H_{13}, H_{31}, H_{33}$;
III) $g_{4}\left(H_{22}\right)=H_{22}^{\prime}$ and $g_{4}\left(H_{22}^{\prime}\right)=H_{22}$;
IV) the remaining 12 curves are g_{4}-stable, but not g_{2}-fixed.

Let $g:=g_{4}$ and $h:=g^{2}$. Then Δ contains exactly $4 g$-fixed curves (i.e., $N=4$), and $6 h$-fixed but not g-fixed curves. Consider the following three possible types of Δ.
i) $A_{1} \oplus A_{17}$.

Since A_{1} contains at most $1 g$-fixed curve, A_{17} must contain at least $3 g$-fixed curves. Then every curve in A_{17} is g-stable. Moreover, it contains $9 h$-fixed curves. Noting that Δ has exactly $4 g$-fixed curves, we see that $C_{3}, C_{7}, C_{11}, C_{15}$ are the g-fixed curves and $C_{1}, C_{5}, C_{9}, C_{13}, C_{17}, A_{1}$ are the h-fixed but not g-fixed curves.
ii) $A_{5} \oplus A_{13}$.

Since A_{5} contains at most $2 g$-fixed curves, A_{13} has a g-fixed curve. So every curve in A_{13} is g-stable. We write

$$
\begin{aligned}
A_{5} & =C_{1}-C_{2}-C_{3}-C_{4}-C_{5} \\
A_{13} & =D_{1}-D_{2}-D_{3}-\cdots-D_{13}
\end{aligned}
$$

If C_{1} is not g-stable, then only C_{3} in A_{5} is h-fixed. Note that it is not g-fixed. Then A_{13} shall contain $4 g$-fixed curves: $D_{1}, D_{5}, D_{9}, D_{13}$. However, Δ would have only $5 h$-fixed but not g-fixed curves $D_{3}, D_{7}, D_{11}, D_{15}, C_{3}$, a contradiction. Therefore, every curve in A_{5} is g-stable. Then A_{5} contains at least $1 g$-fixed curve, and A_{13} contains at most 3 g -fixed curves. It follows that exactly 4 curves $C_{3}, D_{3}, D_{7}, D_{11}$ in Δ are g-fixed.
iii) $A_{9} \oplus A_{9}$.

We call the second A_{9} as A_{9}^{\prime}. If A_{9} is not g-stable, then $g\left(A_{9}\right)=A_{9}^{\prime}$ and $g\left(A_{9}^{\prime}\right)=A_{9}$. There would be no g-fixed curve in Δ, absurd. So both A_{9} and A_{9}^{\prime} are g-stable. Since A_{9} contains at most $3 g$-fixed curves, A_{9}^{\prime} contains at least $1 g$-fixed curve. Hence every curve in A_{9}^{\prime} is g-stable. Similarly, every curve in A_{9} is g-stable. On the other hand, A_{9} should contain at least $2 g$-fixed curves, so does A_{9}^{\prime}. If we write

$$
\begin{aligned}
& A_{9}=C_{1}-C_{2}-C_{3}-\cdots-C_{9} \\
& A_{9}^{\prime}=D_{1}-D_{2}-D_{3}-\cdots-D_{9}
\end{aligned}
$$

then exactly C_{3}, C_{7}, D_{3} and D_{7} are g-fixed.
Since we have determined the action of g on Δ and these Δ can be obtained from the $22 g$-stable rational curves in S_{2} (Figure 2), they are all realizable. The dual graphs are given in Table 2 (1), (3) and (5).

Note that in the proof of above, we showed that for each of the every cases, every irreducible curve in Δ is g-stable.

4.4. Impossibility of $I=6$

In order to complete the proof of Main Theorem, in this section we will explore the method used in [4, Proposition 2.12, Lemma 2.13] to prove the following.

Proposition 17. With the notations in Main Theorem, $I \neq 6$.
Proof. We assume that there is a \log Enriques surface Z of rank 18 without Du Val singularities. Let (S, g) be the associated pair. Let P be an isolated g-fixed point. Then g^{*} can be written as either
i) $\operatorname{diag}\left(\zeta_{6}^{2}, \zeta_{6}^{5}\right)$, or
ii) $\operatorname{diag}\left(\zeta_{6}^{3}, \zeta_{6}^{4}\right)$
with appropriate coordinates around P.
Step 1. There are even number of isolated g-fixed points of the second type.
Suppose $g^{*}=\operatorname{diag}\left(\zeta_{6}^{2}, \zeta_{6}^{5}\right)$ near P. Then $\left(g^{2}\right)^{*}=\left(\zeta_{6}^{4}, \zeta_{6}^{4}\right)$ near P. It follows that P is an isolated g^{2}-fixed point. Suppose $g^{*}=\operatorname{diag}\left(\zeta_{6}^{3}, \zeta_{6}^{4}\right)$ near P. Then $\left(g^{2}\right)^{*}=\operatorname{diag}\left(1, \zeta_{6}^{2}\right)$, and there exists a unique smooth rational g^{2}-fixed curve C passing through P. Since $S^{g^{2}}$ is smooth, C is g-stable but not g-fixed. Let Q be the other g-fixed point on C. Since Q is not an isolated g^{2}-fixed point, it is also an isolated g-fixed point of the second type. Therefore, the g-fixed points of the second type come in pairs. There are even number of such points.

Step 2. The number of isolated g-fixed points of the first type equals that of the second type.

Let P be an isolated g-fixed point. Since $S^{g} \subseteq S^{g^{3}}$, a disjoint union of smooth rational curves, there is a unique g^{3}-fixed curve C passing through P. Hence, C is g-stable but not g-fixed, and it contains exactly $2 g$-fixed points. Note that if P is of the first type $\operatorname{diag}\left(\zeta_{6}^{2}, \zeta_{6}^{5}\right)$, then $\left.g^{*}\right|_{T_{C, P}}=\zeta_{6}^{2}$; if P is of the second type $\operatorname{diag}\left(\zeta_{6}^{3}, \zeta_{6}^{4}\right)$, then $\left.g^{*}\right|_{T_{C, P}}=\zeta_{6}^{4}$. So the other isolated g-fixed point on C is of different type of P. Therefore, there is a one-to-one correspondence between the set of g-fixed points of the first type and that of the second type. Step 2 is proved.

Now we can set $P_{1}, \ldots, P_{2 \ell}$ and $Q_{1}, \ldots, Q_{2 \ell}$ to be the isolated S^{g}-fixed points of type $\operatorname{diag}\left(\zeta_{6}^{2}, \zeta_{6}^{5}\right)$ and of type $\operatorname{diag}\left(\zeta_{6}^{3}, \zeta_{6}^{4}\right)$, respectively. Suppose there are c rational smooth g-fixed curves, say C_{1}, \ldots, C_{c}. We claim that

Step 3. $\ell=c+1$.
Similarly as in the proof of Lemma 14, we use the holomorphic Lefschetz fixed point formula

$$
L(g)=\sum_{i=0}^{2}(-1)^{i} \operatorname{tr}\left(\left.g^{*}\right|_{H^{i}\left(S, \mathcal{O}_{S}\right)}\right)=\sum_{i=1}^{2 \ell} a\left(P_{i}\right)+\sum_{i=1}^{2 \ell} a\left(Q_{i}\right)+\sum_{i=1}^{c} b\left(C_{i}\right) .
$$

We can compute that

$$
\begin{aligned}
& \sum_{i=0}^{2}(-1)^{i} \operatorname{tr}\left(\left.g^{*}\right|_{H^{i}\left(S, \mathcal{O}_{S}\right)}\right)=1+0+\frac{1}{\zeta_{6}}=\frac{3-i \sqrt{3}}{2}, \\
& a\left(P_{i}\right)=\frac{1}{\operatorname{det}\left(1-\left.g^{*}\right|_{T_{P_{i}}}\right)}=\frac{1}{\left(1-\zeta_{6}^{2}\right)\left(1-\zeta_{6}^{5}\right)}=\frac{3-i \sqrt{3}}{6}, \\
& a\left(Q_{i}\right)=\frac{1}{\operatorname{det}\left(1-\left.g^{*}\right|_{T_{Q_{i}}}\right)}=\frac{1}{\left(1-\zeta_{6}^{3}\right)\left(1-\zeta_{6}^{4}\right)}=\frac{3-i \sqrt{3}}{12}, \\
& b\left(C_{i}\right)=\frac{1-\pi\left(C_{i}\right)}{1-\zeta_{6}}-\frac{\zeta_{6} C_{i}^{2}}{\left(1-\zeta_{6}\right)^{2}}=-\frac{3-i \sqrt{3}}{2} .
\end{aligned}
$$

Therefore, $\ell=c+1$.

Step 4. Determine $S^{g^{2}}$.
If P is a g^{2}-fixed but not g-fixed point, then so is $g(P)$. Therefore, there are even number of g^{2}-fixed but not g-fixed points. If C is a rational smooth irreducible g^{2}-fixed curve which does not contain any g-fixed point, so is $g(C)$. Hence, there are even number of such curves.

Suppose the isolated g^{2}-fixed points are $P_{1}, \ldots, P_{2 c+2}, R_{1}, \ldots, R_{2 k}$, and the smooth rational g^{2}-fixed curves are $C_{1}, \ldots, C_{c}, D_{1}, \ldots, D_{c+1}, \ldots, F_{1}, \ldots, F_{2 p}$, where R_{i} is not g-fixed, $Q_{2 i-1}, Q_{2 i} \in D_{i}$, and F_{i} does not contain at g-fixed point. Then apply Lemma 10 to $\left(S, g^{2}\right)$, we obtain

$$
(2 c+2+2 k)-(c+c+1+2 p)=3
$$

which implies $k=p+1$.
Step 5. Determine $S^{g^{3}}$.
We note g^{3} is a non-symplectic involution on S, and so there is no isolated g^{3}-fixed point. If G is a g^{3}-fixed curve which does not contain any g-fixed point, then so are $g(G)$ and $g^{2}(G)$. Therefore, the smooth rational g^{3}-fixed curves are $C_{1}, \ldots, C_{c}, E_{1}, \ldots, E_{2 c+2}, G_{1}, \ldots, G_{3 q}$, where $P_{i}, Q_{i} \in E_{i}$ and G_{i} does not contain any g-fixed point.

Step 6. $c+p+q \leq 2$.
Since $\operatorname{ord}(g)=6$, we can write

$$
\left.g^{*}\right|_{H^{2}(S, \mathbb{Q})}=\operatorname{diag}\left(I_{\alpha},-I_{\beta}, \zeta_{6}^{2} I_{\gamma}, \bar{\zeta}_{6}^{2} I_{\gamma}, \zeta_{6} I_{1+\delta}, \bar{\zeta}_{6} I_{1+\delta}\right),
$$

where $\alpha, \beta, \gamma, \delta \geq 0$. Let $j=1$ in the topological Lefschetz fixed point formula

$$
\chi_{\mathrm{top}}\left(S^{g^{j}}\right)=\sum_{i=0}^{4}(-1)^{i} \operatorname{tr}\left(\left.\left(g^{j}\right)^{*}\right|_{H^{i}(S, \mathbb{Q})}\right) .
$$

We have

$$
\begin{gathered}
(2 c+2)+(2 c+2)+2 \cdot c=2+\alpha-\beta-\gamma+(\delta+1) . \\
\left.\left(g^{2}\right)^{*}\right|_{H^{2}(S, \mathbb{Q})}=\operatorname{diag}\left(I_{\alpha+\beta}, \zeta_{6}^{2} I_{\gamma+\delta+1}, \bar{\zeta}_{6}^{2} I_{\gamma+\delta+1}\right) . \text { Then for } j=2 \text { we have } \\
(2 c+2)+(2 p+2)+2[c+(c+1)+2 p]=2+(\alpha+\beta)-(\gamma+\delta+1) . \\
\left.\left(g^{3}\right)^{*}\right|_{H^{2}(S, \mathbb{Q})}=\operatorname{diag}\left(I_{\alpha+2 \gamma},-I_{\beta+2+2 \delta}\right) . \text { Then for } j=3 \text { we have } \\
2[c+(2 c+2)+3 q]=2+(\alpha+2 \gamma)-(\beta+2+2 \delta) .
\end{gathered}
$$

We also note that

$$
\alpha+\beta+2 \gamma+2(1+\delta)=\operatorname{dim} H^{2}(S, \mathbb{Q})=22
$$

It can be solved that $\delta=-c-p-q+2$. In particular, $c+p+q \leq 2$.
Step 7. Determine the possible types of Δ.
Let Δ_{i} be a connected component of Δ. Then Δ_{i} is either g^{3}-stable or g^{2} stable, otherwise $g^{k}\left(\Delta_{i}\right), k=0, \ldots, 5$, would be contracted to a single Du Val singular point in $\bar{S} /\langle g\rangle$, which should not exist by assumption.

Suppose $\Delta_{i}, i=1, \ldots, m$, are the g^{3}-stable connected components of Δ. Since $\left(g^{3}\right)^{*} \omega_{S}=-\omega_{S}$, using the same argument as for $I=2$, we see that $\Delta_{i}=A_{2 m_{i}-1}$ for some m_{i}, which contains exactly m_{i} smooth rational g^{3}-fixed curves. On the other hand, by computation in Step 4, there are $c+(2 c+c)+3 q=$ $3(c+q)+2 g$-fixed curves. Therefore,

$$
\sum_{i=1}^{n} \operatorname{rank} \Delta_{i}=\sum_{i=1}^{m}\left(2 m_{i}-1\right)=6(c+q)+4-m
$$

Since $\ell=c+1>0, S^{g} \neq \emptyset$. We see that $m \geq 1$.
Suppose $\Delta_{j}^{\prime}, j=1, \ldots, n$, are the g^{2}-stable but not g-stable connected components of Δ. Since $\left(g^{2}\right)^{*} \omega_{S}=\zeta_{3} \omega_{S}$, using the same argument as for $I=3$, we see that each Δ_{j}^{\prime} has Dynkin type A or D.

Since each Δ_{j}^{\prime} contains at least one g^{2}-fixed curve and $F_{1}, \ldots, F_{2 p}$ are the only g^{2}-fixed curves in Δ_{j}^{\prime}, we have $n \leq 2 p$. On the other hand, from the proof of Proposition 11 Step 4 , if rank $\Delta_{j}^{\prime}=\alpha_{j}$, then Δ_{j} contains at least $\left\lceil\left(\alpha_{j}-1\right) / 3\right\rceil$ smooth g^{2}-fixed curves. We have an estimation

$$
2 p \geq \sum_{j=1}^{n}\left\lceil\left(\alpha_{j}-1\right) / 3\right\rceil \geq \sum_{j=1}^{n}\left(\alpha_{j}-1\right) / 3
$$

That is,

$$
\sum_{j=1}^{n} \operatorname{rank} \Delta_{j}^{\prime} \leq 6 p+n
$$

Note that Δ_{j}^{\prime} is not g^{3}-stable, otherwise it would also be g-stable. So Δ_{j}^{\prime} and $g^{3}\left(\Delta_{j}^{\prime}\right)$ are disjoint connected components in Δ. In particular, n is even. It follows from rank $\Delta=18$ that

$$
\begin{aligned}
18 & \leq 6(c+q)+4-m+6 p+n=6(c+p+q)+4-m+n \\
& \leq 6 \cdot 2+4-m+n=16-m+n \\
& \leq 16-1+n=15+n \\
& \leq 15+2 p
\end{aligned}
$$

Then $p \geq 2$ and it follows from $c+p+q \leq 2$ that $p=2$ and $c=q=0$. So Δ has no g-fixed curve. Since n is even, $n=4$ and $m=1$ or 2 . We are left to show that these two cases are impossible.

Recall that Δ_{i} has the form $A_{2 m_{i}-1}$ and contains exactly $m_{i} g^{3}$-fixed curves, and the 2 irreducible g^{3}-fixed curves are contained in $\coprod_{i=1}^{m} \Delta_{i}$. We have $\sum_{i=1}^{m} m_{i}=2$.

If $m=1$, then $m_{1}=2$ and $\Delta_{1}=A_{3}$. However, this would imply that $\sum_{j=1}^{4} \operatorname{rank} \Delta_{j}^{\prime}=15$, which needs to be even. If $m=2$, then $m_{1}=m_{2}=1$ and $\Delta_{1}=\Delta_{2}=A_{1}$. They are g^{3}-fixed. On the other hand, note that $\operatorname{ord}\left(g^{2}\right)=3$. By considering the g^{2}-action on Δ, we see that Δ_{1} and Δ_{2} are also g^{2}-fixed. It
follows that Δ_{1} and $\Delta_{2} g$-fixed, which contradicts our computation that there is no g-fixed curve.

This completes the proof of Proposition 17 and also Main Theorem (1).

5. The list of Dynkin's types of Δ

Table 1. $I=3$
" f " denotes the g-fixed curve and s denotes the g-stable but not g-fixed curve. We use the same labeling for curves as in Figure 1.

> (A) Realizable Cases.

Case I: $A_{18}: s-f-s-s-f-s-s-f-s-s-f-s-s-f-s-s-f-s$
$E_{33}-G_{3}-E_{13}-E_{13}^{\prime}-F_{1}-E_{11}^{\prime}-E_{11}-G_{1}-E_{31}-E_{31}^{\prime}-F_{3}-E_{32}^{\prime}-E_{32}-G_{2}-$ $E_{22}-E_{22}^{\prime}-F_{2}-E_{21}^{\prime}$.

Case II: $D_{18}:{ }_{s}^{s}>f-s-s-f-s-s-f-s-s-f-s-s-f-s-s-f$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{33}-E_{33}^{\prime}-F_{3}-E_{31}^{\prime}-E_{31}-G_{1}-E_{21}-E_{21}^{\prime}-F_{2}-$ $E_{22}^{\prime}-E_{22}-G_{2}$

Case III: $A_{3 m} \oplus A_{3 n}$, where $m+n=6,1 \leq m \leq n \leq 5$.
(1) $A_{3} \oplus A_{15}: s-f-s, s-f-s-s-f-s-s-f-s-s-f-s-s-f-s$ $E_{11}^{\prime}-F_{1}-E_{12}^{\prime}$
$E_{13}-G_{3}-E_{33}-E_{33}^{\prime}-F_{3}-E_{31}^{\prime}-E_{31}-G_{1}-E_{21}-E_{21}^{\prime}-F_{2}-E_{22}^{\prime}-E_{22}-G_{2}-E_{32}$
(2) $A_{6} \oplus A_{12}: s-f-s-s-f-s, s-f-s-s-f-s-s-f-s-s-f-s$ $E_{21}-G_{1}-E_{11}-E_{11}^{\prime}-F_{1}-E_{12}^{\prime}$
$E_{13}-G_{3}-E_{23}-E_{23}^{\prime}-F_{2}-E_{22}^{\prime}-E_{22}-G_{2}-E_{32}-E_{32}^{\prime}-F_{3}-E_{33}^{\prime}$
(3) $A_{9} \oplus A_{9}: s-f-s-s-f-s-s-f-s, s-f-s-s-f-s-s-f-s$
$E_{11}^{\prime}-F_{1}-E_{12}^{\prime}-E_{12}-G_{2}-E_{22}-E_{22}^{\prime}-F_{2}-E_{23}^{\prime}$
$E_{13}-G_{3}-E_{33}-E_{33}^{\prime}-F_{3}-E_{31}^{\prime}-E_{31}-G_{1}-E_{21}$
Case IV: $D_{3 m} \oplus A_{3 n}$, where $m+n=6$.
(1) $D_{6} \oplus A_{12}:{ }_{s}^{s}>f-s-s-f, s-f-s-s-f-s-s-f-s-s-f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}$
E_{12}^{\prime}
$E_{33}^{\prime}-F_{3}-E_{32}^{\prime}-E_{32}-G_{2}-E_{22}-E_{22}^{\prime}-F_{2}-E_{21}^{\prime}-E_{21}-G_{1}-E_{31}$
(2) $D_{9} \oplus A_{9}:{ }_{s}^{s}>f-s-s-f-s-s-f, s-f-s-s-f-s-s-f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{23}-E_{23}^{\prime}-F_{2}$
E_{12}^{\prime}
$E_{22}^{\prime}-G_{2}-E_{32}-E_{32}^{\prime}-F_{3}-E_{31}^{\prime}-E_{31}-G_{1}-E_{21}$
(3) $D_{12} \oplus A_{6}:{ }_{s}^{s}>f-s-s-f-s-s-f-s-s-f, s-f-s-s-f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{23}-E_{23}^{\prime}-F_{2}-E_{22}^{\prime}-E_{22}-G_{2}$
E_{12}^{\prime}
$E_{33}^{\prime 2}-F_{3}-E_{31}^{\prime}-E_{31}-G_{1}-E_{21}$
(4) $D_{15} \oplus A_{3}:{ }_{s}^{s}>f-s-s-f-s-s-f-s-s-f-s-s-f, s-f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{23}-E_{23}^{\prime}-F_{2}-E_{21}^{\prime}-E_{21}-G_{1}-E_{31}-E_{31}^{\prime}-F_{3}$ $E_{22}-G_{2}-E_{32}$
Case V: $D_{3 m} \oplus D_{3 n}$, where $m+n=6,2 \leq m \leq n \leq 4$.
(1) $D_{6} \oplus D_{12}:{ }_{s}^{s}>f-s-s-f,{ }_{s}^{s}>f-s-s-f-s-s-f-s-s-f$.
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}$
E_{12}^{\prime}
$E_{33}^{\prime}>F_{3}-E_{31}^{\prime}-E_{31}-G_{1}-E_{21}-E_{21}^{\prime}-F_{2}-E_{22}^{\prime}-E_{22}-G_{2}$
E_{32}^{\prime}
${ }^{2}$
Case VI: $D_{3 n+1} \oplus A_{3 m-1}, m+n=6,1 \leq m, n \leq 5$.
(1) $D_{4} \oplus A_{14}:{ }_{s}^{s}>f-s, f-s-s-f-s-s-f-s-s-f-s-s-f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}$
E_{12}^{\prime}
$G_{3}-E_{23}-E_{23}^{\prime}-F_{2}-E_{21}^{\prime}-E_{21}-G_{1}-E_{31}-E_{31}^{\prime}-F_{3}-E_{32}^{\prime}-E_{32}-G_{2}-E_{22}$
(2) $D_{7} \oplus A_{11}:{ }_{s}>f-s-s-f-s, f-s-s-f-s-s-f-s-s-f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{23}$
E_{12}^{\prime}
$G_{2}-E_{22}-E_{22}^{\prime}-F_{2}-E_{21}^{\prime}-E_{21}-G_{1}-E_{31}-E_{31}^{\prime}-F_{3}-E_{33}^{\prime}$
(3) $D_{10} \oplus A_{8}:{ }_{s}{ }_{s}>f-s-s-f-s-s-f-s, f-s-s-f-s-s-f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{23}-E_{23}^{\prime}-F_{2}-E_{21}^{\prime}$
E_{12}^{\prime}
$G_{1}-E_{31}-E_{31}^{\prime}-F_{3}-E_{32}^{\prime}-E_{32}-G_{2}-E_{22}$
(4) $D_{13} \oplus A_{5}:{ }_{s}^{s}>f-s-s-f-s-s-f-s-s-f-s, f-s-s-f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{33}-E_{33}^{\prime}-F_{3}-E_{31}^{\prime}-E_{31}-G_{1}-E_{21}$
E_{12}^{\prime}
$G_{2}-E_{22}-E_{22}^{\prime}-F_{2}-E_{23}^{\prime}$
(5) $D_{16} \oplus A_{2}:{ }_{s}^{s}>f-s-s-f-s-s-f-s-s-f-s, f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{23}-E_{23}^{\prime}-F_{2}-E_{21}^{\prime}-E_{21}-G_{1}-E_{31}-E_{31}^{\prime}-F_{3}-E_{32}^{\prime}$
E_{12}^{\prime}
Case VII: $A_{3 m} \oplus A_{3 n} \oplus A_{3 r}, m+n+r=6,1 \leq m \leq n \leq r \leq 4$.
(1) $A_{3} \oplus A_{3} \oplus A_{12}: s-f-s, s-f-s, s-f-s-s-f-s-s-f-s-s-f-s$ $E_{13}-G_{3}-E_{23}$
$E_{32}^{\prime}-F_{3}-E_{33}^{\prime}$
$E_{11}^{\prime}-F_{1}-E_{12}^{\prime}-E_{12}-G_{2}-E_{22}-E_{22}^{\prime}-F_{2}-E_{21}^{\prime}-E_{21}-G_{1}-E_{31}$
(2) $A_{3} \oplus A_{6} \oplus A_{9}: s-f-s, s-f-s-s-f-s, s-f-s-s-f-s-s-f-s$
$E_{13}-G_{3}-E_{33}$
$E_{21}-G_{1}-E_{31}-E_{31}^{\prime}-F_{3}-E_{32}^{\prime}$
$E_{11}^{\prime}-F_{1}-E_{12}^{\prime}-E_{12}-G_{2}-E_{22}-E_{22}^{\prime}-F_{2}-E_{23}^{\prime}$
(3) $A_{6} \oplus A_{6} \oplus A_{6}: s-f-s-s-f-s, s-f-s-s-f-s, s-f-s-s-f-s$
$E_{11}^{\prime}-F_{1}-E_{12}^{\prime}-E_{12}-G_{2}-E_{22}$
$E_{13}-G_{3}-E_{33}-E_{33}^{\prime}-F_{3}-E_{32}^{\prime}$
$E_{23}^{\prime}-F_{2}-E_{21}^{\prime}-E_{21}-G_{1}-E_{31}$
Case VIII: $D_{6} \oplus D_{6} \oplus D_{6}:{ }_{s}^{s}>f-s-s-f,{ }_{s}^{s}>f-s-s-f,{ }_{s}^{s}>f-s-s-f$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}$
E_{12}^{\prime}
$E_{21}^{\prime}>F_{2}-E_{22}^{\prime}-E_{22}-G_{2}$
E_{23}^{\prime}
$E_{32}^{\prime}>F_{3}-E_{31}^{\prime}-E_{31}-G_{1}$
E_{33}^{\prime}
Case X: $A_{3 m} \oplus A_{3 n} \oplus D_{3 r}$, where $m+n+r=6, m \leq n$.
(1) $A_{3} \oplus A_{3} \oplus D_{12}: s-f-s, s-f-s,{ }_{s}^{s}>f-s-s-f-s-s-f-s-s-f$
$E_{22}-G_{2}-E_{32}$
$E_{31}^{\prime}-F_{3}-E_{33}^{\prime}$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{23}-E_{23}^{\prime}-F_{2}-E_{21}^{\prime}-E_{21}-G_{1}, ~$
(2) $A_{3} \oplus A_{6} \oplus D_{9}: s-f-s, s-f-s-s-f-s,{ }_{s}^{s}>f-s-s-f-s-s-f$
$E_{22}-G_{2}-E_{32}$
$E_{21}-G_{1}-E_{31}-E_{31}^{\prime}-F_{3}-E_{33}^{\prime}$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{23}-E_{23}^{\prime}-F_{2}$
E_{12}^{\prime}
(3) $A_{3} \oplus A_{9} \oplus D_{6}: s-f-s, s-f-s-s-f-s-s-f-s,{ }_{s}^{s}>f-s-s-f$.
$E_{22}-G_{2}-E_{32}$
$E_{E_{11}^{\prime}}^{\prime}-F_{2}-E_{21}^{\prime}-E_{21}-G_{1}-E_{31}-E_{31}^{\prime}-F_{3}-E_{33}^{\prime}$
E_{11}^{\prime}
$E_{12}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}$
(4) $A_{6} \oplus A_{6} \oplus D_{6}: s-f-s-s-f-s, s-f-s-s-f-s,{ }_{s}^{s}>f-s-f-s$
$E_{22}-G_{2}-E_{32}-E_{32}^{\prime}-F_{3}-E_{33}^{\prime}$
$E_{E_{23}^{\prime}}^{\prime}-F_{2}-E_{21}^{\prime}-E_{21}-G_{1}-E_{31}$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}$
Case XI: $D_{3 m+1} \oplus A_{3 n} \oplus A_{3 r-1}$, where $m+n+r=6$.
(1) $D_{4} \oplus A_{3} \oplus A_{11}:{ }_{s}^{s}>f-s, s-f-s, f-s-s-f-s-s-f-s-s-f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}$
$E_{12}^{\prime}-G_{1}-E_{31}$
$F_{3}-E_{32}^{\prime}-E_{32}-G_{2}-E_{22}-E_{22}^{\prime}-F_{2}-E_{23}^{\prime}-E_{23}-G_{3}-E_{33}$
(2) $D_{4} \oplus A_{6} \oplus A_{8}:{ }_{s}^{s}>f-s, s-f-s-s-f-s, f-s-s-f-s-s-f-s$
$E_{E_{12}^{\prime}}^{\prime}>F_{1}-E_{13}^{\prime}$
$E_{21}-G_{1}-E_{31}-E_{31}^{\prime}-F_{3}-E_{32}^{\prime}$
$G_{2}-E_{22}-E_{22}^{\prime}-F_{2}-E_{23}^{\prime}-E_{23}-G_{3}-E_{33}$
(3) $D_{4} \oplus A_{9} \oplus A_{5}:{ }_{s}^{s}>f-s, s-f-s-s-f-s-s-f-s, f-s-s-f-s$
$E_{E_{11}^{\prime}}^{\prime}>F_{1}-E_{13}^{\prime}$
$E_{21}-G_{1}-E_{31}-E_{31}^{\prime}-F_{3}-E_{33}^{\prime}-E_{33}-G_{3}-E_{23}$
$F_{2}-E_{22}^{\prime}-E_{22}-G_{2}-E_{32}$
(4) $D_{4} \oplus A_{12} \oplus A_{2}:{ }_{s}^{s}>f-s, s-f-s-s-f-s-s-f-s-s-f-s, f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}$
E_{12}^{\prime}
$E_{21}-G_{1}-E_{31}-E_{31}^{\prime}-F_{3}-E_{32}^{\prime}-E_{32}-G_{2}-E_{22}-E_{22}^{\prime}-F_{2}-E_{23}^{\prime}$
$G_{3}-E_{33}$
(5) $D_{7} \oplus A_{3} \oplus A_{8}:{ }_{s}^{s}>f-s-s-f-s, s-f-s, f-s-s-f-s-s-f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{33}$
E_{12}^{\prime}
$E_{22}-G_{2}-E_{32}$
$F_{3}-E_{31}^{\prime}-E_{31}-G_{1}-E_{21}-E_{21}^{\prime}-F_{2}-E_{23}^{\prime}$
(6) $D_{7} \oplus A_{6} \oplus A_{5}:{ }_{s}^{s}>f-s-s-f-s, s-f-s-s-f-s, f-s-s-f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{33}$
E_{12}^{\prime}
$E_{23}^{\prime}-F_{2}-E_{22}^{\prime}-E_{22}-G_{2}-E_{32}$
$F_{3}-E_{31}^{\prime}-E_{31}-G_{1}-E_{21}$
(7) $D_{7} \oplus A_{9} \oplus A_{2}:{ }_{s}^{s}>f-s-s-f-s, s-f-s-s-f-s-s-f-s, f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{33}$
E_{12}^{\prime}
$E_{23}^{\prime}-F_{2}-E_{21}^{\prime}-E_{21}-G_{1}-E_{31}-E_{31}^{\prime}-F_{3}-E_{32}^{\prime}$
$G_{2}-E_{22}$
(8) $D_{10} \oplus A_{3} \oplus A_{5}:{ }_{s}^{s}>f-s-s-f-s-s-f-s, s-f-s, f-s-s-f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{33}-E_{33}^{\prime}-F_{3}-E_{31}^{\prime}$
E_{12}^{\prime}
$E_{22}-G_{2}-E_{32}$
$G_{1}-E_{21}-E_{21}^{\prime}-F_{2}-E_{23}^{\prime}$
(9) $D_{10} \oplus A_{6} \oplus A_{2}:{ }_{s}>f-s-s-f-s-s-f-s, s-f-s-s-f-s, f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{33}-E_{33}^{\prime}-F_{3}-E_{31}^{\prime}$
E_{12}^{\prime}
$E_{23}^{\prime}-F_{2}-E_{22}^{\prime}-E_{22}-G_{2}-E_{32}$
$E_{23}^{\prime 2}-F_{2}-E_{22}^{\prime}-E_{22}-G_{2}-E_{32}$
$G_{1}-E_{21}$
(10) $D_{13} \oplus A_{3} \oplus A_{2}:{ }_{s}^{s}>f-s-s-f-s-s-f-s, s-f-s, f-s$
$E_{E_{11}^{\prime}}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{33}-E_{33}^{\prime}-F_{3}-E_{31}^{\prime}-E_{31}-G_{1}-E_{21}$
$E_{22}^{12}-G_{2}-E_{32}$
$F_{2}-E_{23}^{\prime}$
Case XII: $D_{3 m+1} \oplus D_{3 n+1} \oplus A_{3 r-2}$, where $m+n+r=6, m \leq n$.
(2) $D_{4} \oplus D_{7} \oplus A_{7}:{ }_{s}^{s}>f-s,{ }_{s}^{s}>f-s-s-f-s, f-s-s-f-s-s-f$
${ }_{E_{11}^{\prime}}^{\prime}>F_{1}-E_{13}^{\prime}$
E_{12}^{\prime}
E_{21}^{\prime}
$E_{22}^{\prime}>F_{2}-E_{23}^{\prime}-E_{23}-G_{3}-E_{33}$
$G_{1}-E_{31}-E_{31}^{\prime}-F_{3}-E_{32}^{\prime}-E_{32}-G_{2}$
(5) $D_{7} \oplus D_{7} \oplus A_{4}:{ }_{s}^{s}>f-s-s-f-s,{ }_{s}^{s}>f-s-s-f-s, f-s-s-f$
$E_{12}^{\prime}>F_{1}-E_{11}^{\prime}-E_{11}-G_{1}-E_{31}$
E_{13}^{\prime}
$E_{21}^{\prime}>F_{2}-E_{23}^{\prime}-E_{23}-G_{3}-E_{33}$
E_{22}^{\prime}
$G_{2}-E_{32}-E_{32}^{\prime}-F_{3}$
(6) $D_{7} \oplus D_{10} \oplus A_{1}:{ }_{s}^{s}>f-s-s-f-s,{ }_{s}^{s}>f-s-s-f-s-s-f-s, f$
$E_{12}^{\prime}>F_{1}-E_{11}^{\prime}-E_{11}-G_{1}-E_{31}$
E_{13}^{\prime}
$E_{21}^{\prime}>F_{2}-E_{23}^{\prime}-E_{23}-G_{3}-E_{33}-E_{33}^{\prime}-F_{3}-E_{32}^{\prime}$
E_{22}^{\prime}
G_{2}
Case XIII: $D_{3 n+1} \oplus D_{3 m} \oplus A_{3 r-1}$, where $m+n+r=6, m \geq 2$.
(3) $D_{4} \oplus D_{12} \oplus A_{2}:{ }_{s}^{s}>f-s,{ }_{s}^{s}>f-s-s-f-s-s-f-s-s-f, f-s$

(4) $D_{7} \oplus D_{6} \oplus A_{5}:{ }_{s}^{s}>f-s-s-f-s,{ }_{s}^{s}>f-s-s-f, f-s-s-f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{33}$
E_{12}^{\prime}
D_{2}^{\prime}
E_{12}^{\prime}
E_{22}^{\prime}
$E_{23}^{\prime}>F_{2}-E_{21}^{\prime}-E_{21}-G_{1}$
$G_{2}-E_{32}-E_{32}^{\prime}-F_{3}-E_{31}^{\prime}$
(5) $D_{7} \oplus D_{9} \oplus A_{2}:{ }_{s}^{s}>f-s-s-f-s,{ }_{s}^{s}>f-s-s-f-s-s-f, f-s$
$E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{33}$
E_{12}^{\prime}
$E_{22}^{\prime}>F_{2}-E_{21}^{\prime}-E_{21}-G_{1}-E_{31}-E_{31}^{\prime}-F_{3}$
E_{23}^{\prime}
$G_{2}-E_{32}$
(6) $D_{10} \oplus D_{6} \oplus A_{2}:{ }_{s}^{s}>f-s-s-f-s-s-f-s-s-f-s,{ }_{s}^{s}>f-s-s-f$, $f-s$

$$
\begin{aligned}
& E_{11}^{\prime}>F_{1}-E_{13}^{\prime}-E_{13}-G_{3}-E_{33}-E_{33}^{\prime}-F_{3}-E_{31}^{\prime} \\
& E_{12}^{\prime} \\
& E_{22}^{\prime}>F_{2}-E_{21}^{\prime}-E_{21}-G_{1} \\
& E_{23}^{\prime}>E_{32} \\
& G_{2}-E_{32}
\end{aligned}
$$

(B) Indeterminate Cases

Case V: (2) $\quad D_{9} \oplus D_{9}:{ }_{s}^{s}>f-s-s-f-s-s-f,{ }_{s}^{s}>f-s-s-f-s-s-f$
Case IX: (1) $A_{3} \oplus D_{6} \oplus D_{9}: s-f-s,{ }_{s}^{s}>f-s-s-f,{ }_{s}^{s}>f-s-s-f-s-s-f$
Case IX: (2) $\quad A_{6} \oplus D_{6} \oplus D_{6}: s-f-s-s-f-s,{ }_{s}^{s}>f-s-s-f,{ }_{s}^{s}>f-s-s-f$
Case XII: (1) $\quad D_{4} \oplus D_{4} \oplus A_{10}:{ }^{s}>f-s,{ }_{s}^{s}>f-s, f-s-s-f-s-s-f-s-s-f$
Case XII: (3) $\quad D_{4} \oplus D_{10} \oplus A_{4}:{ }_{s}^{s}>f-s,{ }_{s}^{s}>f-s-s-f-s-s-f-s, f-s-s-f$
Case XII: (4) $\quad D_{4} \oplus D_{13} \oplus A_{1}:{ }_{s}^{s}>f-s,{ }_{s}^{s}>f-s-s-f-s-s-f-s-s-f-s, f$
Case XIII:(1) $\quad D_{4} \oplus D_{6} \oplus A_{8}:{ }_{s}^{s}>f-s,{ }_{s}^{s}>f-s-s-f, f-s-s-f-s-s-f-s$

Case XIII:(2) $\quad D_{4} \oplus D_{9} \oplus A_{5}:{ }_{s}^{s}>f-s,{ }_{s}^{s}>f-s-s-f-s-s-f, f-s-s-f-s$.
Table 2. $I=2,4$

We use the same labeling as in Figure 2. For $I=2$, " f " denotes the g fixed curve and s denotes the g-stable but not g-fixed curve. For $I=4$, define $h=g^{2}$; " f " denotes the g-fixed curve, " h " denotes the h-fixed but not g-fixed curve and " s " denotes the g-stable but not h-fixed curve.
(1) $A_{1} \oplus A_{17}$:
$I=2: f, f-s-f-s-f-s-f-s-f-s-f-s-f-s-f-s-f$ $I=4: h, h-s-f-s-h-s-f-s-h-s-f-s-h-s-f-s-h$ H_{11}
$H_{13}-E_{13}^{\prime}-F_{1}-E_{12}-G_{2}-E_{32}-F_{3}-E_{33}^{\prime}-H_{33}-G_{3}-E_{23}^{\prime}-F_{2}-E_{21}^{\prime}-$ $G_{1}-E_{31}-H_{31}$.
(2) $A_{3} \oplus A_{15}$:
$I=2: f-s-f, f-s-f-s-f-s-f-s-f-s-f-s-f-s-f$
$F_{2}-E_{22}-G_{2}$
$H_{11}-E_{11}^{\prime}-F_{1}-E_{13}^{\prime}-H_{13}-E_{13}-G_{3}-E_{33}-H_{33}-E_{33}^{\prime}-F_{3}-E_{31}^{\prime}-$ $H_{31}-E_{31}-G_{1}$.
(3) $A_{5} \oplus A_{13}$:
$I=2: f-s-f-s-f, f-s-f-s-f-s-f-s-f-s-f-s-f$
$I=4: h-s-f-s-h, h-s-f-s-h-s-f-s-h-s-f-s-h$
$H_{13}-E_{13}-G_{3}-E_{33}-H_{33}$
$H_{11}-E_{11}^{\prime}-F_{1}-E_{12}-G_{2}-E_{32}-F_{3}-E_{31}^{\prime}-H_{31}-E_{31}-G_{1}-E_{2}^{\prime}-F_{2}$
(4) $A_{7} \oplus A_{11}$:
$I=2: f-s-f-s-f-s-f, f-s-f-s-f-s-f-s-f-s-f$
$H_{13}-E_{13}-G_{3}-E_{33}-H_{33}-E_{33}^{\prime}-F_{3}$
$H_{11}-E_{11}^{\prime}-F_{1}-E_{12}-G_{2}-E_{22}-F_{2}-E_{21}^{\prime}-G_{1}-E_{31}-H_{31}$
(5) $A_{9} \oplus A_{9}$:
$I=2: f-s-f-s-f-s-f-s-f, f-s-f-s-f-s-f-s-f$
$I=4: h-s-f-s-h-s-f-s-h, h-s-f-s-h-s-f-s-h)$
$H_{11}-E_{11}^{\prime}-F_{1}-E_{12}-G_{2}-E_{32}-F_{3}-E_{33}^{\prime}-H_{33}$
$H_{13}-E_{13}-G_{3}-E_{23}^{\prime}-F_{2}-E_{21}^{\prime}-G_{1}-E_{31}-H_{31}$
Acknowledgement. The author would like to thank for Prof D.-Q. Zhang for his kind guidance of the paper and thank the referee for the valuable comments.

References

[1] M. F. Atiyah and G. B. Segal, The index of elliptic operators. II, Ann. of Math. (2) $\mathbf{8 7}$ (1968), 531-545.
[2] M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546-604.
[3] K. Oguiso and D.-Q. Zhang, On extremal log Enriques surfaces. II, Tohoku Math. J. (2) 50 (1998), no. 3, 419-436.
[4] , On the complete classification of extremal log Enriques surfaces, Math. Z. 231 (1999), no. 1, 23-50.
[5] T. Shioda and H. Inose, On singular K3 surfaces, Complex analysis and algebraic geometry, pp. 119-136. Iwanami Shoten, Tokyo, 1977.
[6] \qquad On the most algebraic K3 surfaces and the most extremal log Enriques surfaces, Amer. J. Math. 118 (1996), no. 6, 1277-1297.
[7] K. Ueno, A remark on automorphisms of Enriques surfaces, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 23 (1976), no. 1, 149-165.
[8] D.-Q. Zhang, Logarithmic Enriques surfaces, J. Math. Kyoto Univ. 31 (1991), no. 2, 419-466.
[9] , Logarithmic Enriques surfaces. II, J. Math. Kyoto Univ. 33 (1993), no. 2, 357397.

Department of Mathematics
National University of Singapore
10 Lower Kent Ridge Road
119076, Singapore
E-mail address: matwf@nus.edu.sg

[^0]: Received April 9, 2010; Revised July 30, 2010.
 2010 Mathematics Subject Classification. Primary 14J28; Secondary 14J17, 14J50.
 Key words and phrases. automorphisms of K3 surfaces, log Enriques surfaces, quotient singularities.

