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THE CLASSIFICATION OF

LOG ENRIQUES SURFACES OF RANK 18

Fei Wang

Abstract. Log Enriques surface is a generalization of K3 and Enriques
surface. We will classify all the rational log Enriques surfaces of rank 18
by giving concrete models for the realizable types of these surfaces.

1. Introduction

A normal projective surface Z with at worst quotient singularities is called
a logarithmic (abbr. log) Enriques surface if its canonical Weil divisor KZ is
numerically equivalent to zero, and if its irregularity dimH1(Z,OZ) = 0. By
the abundance for surfaces, KZ ∼Q 0.

Let Z be a log Enriques surface and define

I := I(Z) = min{n ∈ Z+ | OZ(nKZ) ≃ OZ}
to be the canonical index of Z. The canonical cover of Z is defined as

π : S̄ := SpecOZ




I−1⊕

j=0

OZ(−jKZ)


 → Z.

This is a Galois Z/IZ-cover. So S̄/(Z/IZ) = Z.
Note that a log Enriques surface is irrational if and only if it is a K3 or

Enriques surface with at worst Du Val singularities (cf. [8, Proposition 1.3]).
More precisely, a log Enriques surface of index one is a K3 surface with at worst
Du Val singularities, and a log Enriques surface of index two is an Enriques
surface with at worst Du Val singularities or a rational surface. Therefore,
the log Enriques surfaces can be viewed as generalizations of K3 surfaces and
Enriques surfaces. More results about the canonical indices are studied in [8]
and [9].

If a log Enriques surface Z has Du Val singularities, let Z̃ → Z be the

partial minimal resolution of all Du Val singularities of Z, then Z̃ is again a
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log Enriques surface of the same canonical index as Z. Therefore, we assume
throughout this paper that Z has no Du Val singularities; otherwise we consider

Z̃ instead.
By the definition of the canonical cover and the classification result of sur-

faces, we have the following (cf. [8]).
1. S̄ has at worst Du Val singularities, and its canonical divisorKS̄ is linearly

equivalent to zero. So S̄ is either an abelian surface or a projective K3 surface
with at worst Du Val singularities.

2. π : S̄ → Z is a finite, cyclic Galois cover of degree I = I(Z), and it is
étale over Z\ SingZ.

3. Gal(S̄/Z) ≃ Z/IZ acts faithfully on H0(OS̄(KS̄)). In other words, there
is a generator g of Gal(S̄/Z) such that g∗ωS̄ = ζIωS̄, where ζI is the Ith
primitive root of unity and ωS̄ is a nowhere vanishing regular 2-form on S̄.

Suppose Sing S̄ 6= ∅. Let ν : S → S̄ be the minimal resolution of S̄, and
∆S the exceptional divisor of ν. Then ∆S is a disconnected sum of divisors of
Dynkin’s type:

(⊕Aα)⊕ (⊕Dβ)⊕ (⊕Eγ)

Note that S is a K3 surface. The Chern map c1 : Pic(S) → H2(S,Z) is injec-
tive. So Pic(S) is mapped isomorphically onto the Neron-Severi group NS(S).
We can therefore define the rank of ∆S to be the rank of the sublattice of the
Néron Severi lattice NS(S) ≃ Pic(S) generated by the irreducible components
of ∆S . In other words,

rank∆S =
∑

α+
∑

β +
∑

γ.

Moreover, let ρ(S) := rankPic(S) be the Picard number of S, then

rank∆S ≤ ρ(S)− 1 ≤ 20− 1 = 19.

Since S is uniquely determined up to isomorphism, by abuse of language we
also say Z is of type (⊕Aα)⊕ (⊕Dβ)⊕ (⊕Eγ), and call rank∆S the rank of Z.

A rational log Enriques surface Z is called extremal if it is of rank 19, the
maximal possible value 19. The extremal log Enriques surfaces are completely
classified in [4]. In [3], the isomorphism classes of rational log Enriques surfaces
of type A18 and D18 are determined. In this paper, we are going to classify all
the rational log Enriques surfaces of rank 18 by proving the following theorem.

Main Theorem. Let Z be a rational log Enriques surfaces of rank 18 without

Du Val singularities. Let S̄ → Z be the canonical cover, and S → S̄ the minimal

resolution with exceptional divisor ∆S . Then we have the following assertions.

1) The canonical index I(Z) = 2, 3 or 4.
2) If I(Z) = 2, then (S, g) ≃ (S2, g2), and ∆S is of one of the following 5

types:

A1 ⊕A17, A3 ⊕A15, A5 ⊕A13, A7 ⊕A11, A9 ⊕A9.

Moreover, all of them are realizable.
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3) If I(Z) = 3, then (S, g) ≃ (S3, g3), and ∆S is of one of the 48 possible

types in Table 1, and from which 40 types have been realized.

4) If I(Z) = 4, then (S, g2) ≃ (S2, g2), and ∆S is of one of the following 3

types:
A1 ⊕A17, A5 ⊕A13, A9 ⊕A9.

Moreover, all of them are realizable.

5) For each of the possible cases in (2) and (3), every irreducible curve in

∆S is g-stable, and the action of g on ∆ is uniquely determined, which

are given in Table 2 and 1, respectively.

Here (S2, g2) (Definition 6) and (S3, g3) (Definition 3) are the Shioda-Inose’s

pairs of discriminants 4 and 3 respectively.

2. Preliminaries

Definition 1. Let Z be a normal projective surface defined over the complex
number field C. It is called a log Enriques surface of canonical index I if

1) Z has at worst quotient singularities, and

2) IKZ is linearly equivalent to zero for the minimum positive integer I, and

3) the irregularity q(Z) := dimH1(Z,OZ) = 0.

We will use the following notations in Section 3–4.

1. For each I ∈ Z+, ζI = exp(2π
√
−1/I), a primitive Ith root of unity.

2. Let X be a variety, and G an automorphism group on X . For each
g ∈ X , denote the fixed locus by Xg = {x ∈ X | g(x) = x}. Set
X [G] =

⋃
g∈G\{id} X

g.

3. Let S be a surface and g an automorphism on S. A curve C on S is called
g-stable if g(C) = C, and it is called g-fixed if g(x) = x for every x ∈ C. A
point x ∈ S is an isolated g-fixed point if g(x) = x and it is not contained
in any g-fixed curve.

3. Log Enriques surfaces from Shioda-Inose’s pairs

In this section, we assume that Z is a rational log Enriques surface of rank
18 and canonical index I without Du Val singularities. Let π : S̄ → Z be
the canonical cover of Z, and ν : S → S̄ the minimal resolution of S̄ with
exceptional divisor ∆S . Then

20 ≥ ρ(S) ≥ rank∆S + 1 = 19.

Recall that S is a K3 surface. Let TS denote the transcendental lattice of S,
i.e., the orthogonal complement of Pic(S) in H2(S,Z). Then

rankTS = dimH2(S,Z)− ρ(S) = 22− ρ(S) = 2 or 3.

Let g be the automorphism on S induced by a generator of Gal(S̄/Z), and
ωS a nowhere vanishing holomorphic 2-form on S. Then g∗ωS = ζIωS. Note
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that ωS ∈ TS ⊗ C. So ζI is an eigenvalue of g∗ acting on TS . Therefore,
ϕ(I) ≤ rankTS ≤ 3, where ϕ is Euler’s phi function. It follows that:

Lemma 2. The canonical index I(Z) = 2, 3, 4 or 6.

We have indicated that all the realizable rational log Enriques surfaces listed
in Main Theorem can be constructed from the Shioda-Inose’s pairs (S2, g2) or
(S3, g3) (cf. [5]). Precisely, if I(Z) = 2, then (S, g) ≃ (S2, g2); if I(Z) = 3, then
(S, g) ≃ (S3, g3); if I(Z) = 4, then (S, g2) ≃ (S2, g2); we will also show that
I 6= 6.

Definition 3. Let ζ3 := exp(2π
√
−1/3), and Eζ3 := C/(Z + Zζ3) the elliptic

curve of period ζ3. Let S̄3 := E2
ζ3
/〈diag(ζ3, ζ23 )〉 be the quotient surface, and

S3 → S̄3 the minimal resolution of S̄3. Let g3 be the automorphism of S3

induced by the action diag(ζ3, 1) on E2
ζ3
. Then (S3, g3) is called the Shioda-

Inose’s pair of discriminant 3.
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Figure 1. (S3, g3)

It is proved in [6] and [4] that:

Proposition 4. Let (S3, g3) be the Shioda-Inose’s pair of discriminant 3. Then

1) S3 contains 24 rational curves: F1, F2, F3 coming from (Eζ3)
ζ3 × Eζ3 ;

G1, G2, G3 coming from Eζ3 × (Eζ3)
ζ3 ; and Eij , E

′
ij (i, j = 1, 2, 3) the

exceptional curves arising from the 9 Du Val singular points of S̄3 (Fig-
ure. 1);
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2) g∗3ωS3
= ζ3ω3, where ωS3

is a nowhere vanishing holomorphic 2-form on

S3, and g∗3 |Pic(S3) = id; so each of the 24 curves is g3-stable;

3) Sg3
3 = (

∐3
i=1 Fi)

∐
(
∐3

j=1 Gj)
∐
(
∐3

i,j=1{Pij}), where {Pij} = Eij ∩ E′
ij ;

4) g3 ◦ ϕ = ϕ ◦ g3 for all ϕ ∈ Aut(S3).

Proposition 5. Let (S, g) be a pair of a smooth K3 surface S and an auto-

morphism of g on S. Assume that

1) g3 = id, the identity on S;

2) g∗ωS = ζ3ωS, where ωS is a nowhere vanishing holomorphic 2-form on

S;

3) Sg consists of only rational curves and isolated points;

4) Sg contains at least 6 rational curves.

Then (S, g) ≃ (S3, g3). Moreover, Sg consists of exactly 6 rational curves and

9 isolated points.

Definition 6. Let Eζ4 := C/(Z+ Z
√
−1) be the elliptic curve of period ζ4 =√

−1. Let S̄2 := E2
ζ4
/〈diag(ζ4, ζ34 )〉 be the quotient surface and S2 → S̄2

the minimal resolution of S̄2. Let g2 be the involution of S2 induced by the
action diag(−1, 1) on E2

ζ4
. Then (S2, g2) is called the Shioda-Inose’s pair of

discriminant 4.
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Figure 2. (S2, g2)
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It is also proved in [6] and [4] that:

Proposition 7. Let (S2, g2) be the Shioda-Inose’s pair of discriminant 4. Then

1) S2 contains 24 rational curves: F1, F2, F3 coming from (Eζ4 )
[〈ζ4〉] × Eζ4 ;

G1, G2, G3 coming from Eζ4×(Eζ4)
[〈ζ4〉]; and E′

ij+Hij+Eij , i, j ∈ {1, 3},
the exceptional curves arising from the 4 Du Val singular points of Dynkin

type A3; and E12, E22, E32, E
′
21, E

′
22, E

′
23, the exceptional curves arising

from the 6 Du Val singular points of Dynkin type A1 (Figure. 2);

2) g∗2ωS2
= −ωS2

, where ωS2
is a nowhere vanishing holomorphic 2-form on

S2, and g∗2 |Pic(S) = id; so each of the 24 curves is g2-stable;

3) Sg2
2 = (

∐3
i=1 Fi)

∐
(
∐3

j=1 Gj)
∐
(
∐

i,j∈{1,3} Hij);

4) g2 ◦ ϕ = ϕ ◦ g2 for all ϕ ∈ Aut(S2).

Proposition 8. Let (S, g) be a pair of a smooth K3 surface S and an auto-

morphism g of S. Assume that

1) g2 = id, the identity on S;

2) g∗ωS = −ωS, where ωS is a nowhere vanishing holomorphic 2-form on S;

3) Sg consists of only rational curves;

4) Sg contains at least 10 rational curves.

Then (S, g) ≃ (S2, g2). Moreover, Sg consists of exactly 10 rational curves.

4. The classification

In this section, we assume that Z is a log Enriques surface of rank 18 without
Du Val singularities. Let π : S̄ → Z be the canonical cover, and ν : S → S̄
the minimal resolution with exceptional divisor ∆ := ∆S . Since the canonical
cover S̄ → Z is unramified in codimension one, every curve in S[〈g〉] is contained
in ∆. In particular, S[〈g〉] consists of only smooth rational curves and a finite
number of isolated points, and ∆ is g-stable.

In general, let S be a K3 surface, and g an automorphism of S of order
n. Let TS be its transcendental lattice. Note that g induces actions g∗ on
Pic(S)⊗C and on TS ⊗C. Since gn = id, these actions are diagonalizable and
every eigenvalue of g∗ is an nth root of unity, say ζin for some 0 ≤ i < n. Since
g∗ is well-defined on Pic(S) and TS , the number of eigenvalues ζin of g∗|Pic(S)⊗C

and g∗|TS⊗C equals to that of the conjugate eigenvalues ζ̄in, respectively. By
noting that dimH2(S,C) = 22, we have the following lemma:

Lemma 9 ([6, Lemma 2.0]). With the notations above, let t0 and r0 be the

rank of the invariant lattices (Pic(S))g
∗

and (TS)
g∗

, respectively. Let Is denote

the identity matrix of size s.
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1) If n = 2k + 1 is odd, then ρ(S) = t0 + 2
∑k

i=1 ti and

g∗|Pic(S)⊗C = diag(It0 , ζnIt1 , ζ̄nIt1 , ζ
2
nIt2 , ζ̄

2
nIt2 , . . . , ζ

k
nItk , ζ̄

k
nItk),

g∗|TS⊗C = diag(Ir0 , ζnIr1 , ζ̄nIr1 , ζ
2
nIr2 , ζ̄

2
nIr2 , . . . , ζ

k
nIrk , ζ̄

k
nIrk),

and t0 + r0 + 2
∑k

i=1 ti + 2
∑k

i=1 ri = 22.

2) If n = 2k is even, then ρ(S) = t0 + 2
∑k−1

i=1 ti + tk and

g∗|Pic(S)⊗C=diag(It0 , ζnIt1 , ζ̄nIt1 , ζ
2
nIt2 , ζ̄

2
nIt2 , . . . , ζ

k−1
n Itk−1

, ζ̄k−1
n Itk−1

,−Itk),

g∗|TS⊗C=diag(Ir0 , ζnIr1 , ζ̄nIr1 , ζ
2
nIr2 , ζ̄

2
nIr2 , . . . , ζ

k−1
n Irk−1

, ζ̄k−1
n Irk−1

,−Irk),

and t0 + r0 + 2
∑k−1

i=1 ti + 2
∑k

i=1 ri + tk + rk = 22.

4.1. Classification when I = 3

Let (S, g) be a pair of smooth K3 surface S and an automorphism g of S.
We assume that g∗ωS = ζ3ωS for a nowhere vanishing holomorphic 2-form ωS

on S.
Let P be an isolated g-fixed point on S. Then g∗ can be written as diag(ζa3, ζ

b
3)

for some a, b ∈ {1, 2} with a + b ≡ 1 (mod 3) under some appropriate local
coordinates around P because g∗ωS = ζ3ωS . We see that a = b = 2 and the
action is diag(ζ23 , ζ

2
3 ). If C is a g-fixed irreducible curve and Q ∈ C, then it

also follows from g∗ωS = ζ3ωS that g∗ can be written as diag(1, ζ3) under some
appropriate local coordinates around Q. In particular, the g-fixed curves are
smooth and mutually disjoint.

We need to use the following lemma in the classification for I = 3.

Lemma 10 (“Three Go” Lemma, [6, Lemma 2.2]). Let (S, g) be a pair of

smooth K3 surface S and an automorphism g of S. Assume that g3 = id and

g∗ωS = ζ3ωS.

1) Let C1 − C2 − C3 be a linear chain of g-stable smooth rational curves.

Then exactly one of Ci is g-fixed.

2) Let C be a g-stable but not g-fixed smooth rational curve. Then there is

a unique g-fixed curve D such that C ·D = 1.

3) Let M and N be the number of smooth rational curves and the number of

isolated points in Sg, respectively. Then M −N = 3.

Suppose I(Z) = 3. Then the associated pair (S, g) satisfies the conditions
in Lemma 10. We first determine a possible list of the Dynkin’s types of ∆.

Proposition 11. With the notations as in Main Theorem, suppose I(Z) = 3.
Then (S, g) ≃ (S3, g3), the Shioda-Inose’s pair of discriminant 3. Moreover, ∆
is of one of the following 13 types:

I. A18;

II. D18;
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III. A3m ⊕A3n, m+ n = 6;

IV. D3m ⊕A3n, m+ n = 6;

V. D3m ⊕D3n, m+ n = 6;

VI. D3m+1 ⊕A3n−1, m+ n = 6;

VII. A3m ⊕A3n ⊕A3r, m+ n+ r = 6;

VIII. D6 ⊕D6 ⊕D6;

IX. A3m ⊕D3n ⊕D3r, m+ n+ r = 6;

X. A3m ⊕A3n ⊕D3r, m+ n+ r = 6;

XI. D3m+1 ⊕A3n ⊕A3r−1, m+ n+ r = 6;

XII. D3m+1 ⊕D3n+1 ⊕A3r−2, m+ n+ r = 6;

XIII. D3m+1 ⊕D3n ⊕A3r−1, m+ n+ r = 6.

Proof. Let ∆i be a connected component of ∆.

Step 1: ∆i is g-stable.
If ∆i is not g-stable, then its image in Z would be a Du Val singular point

since I(Z) = 3 is a prime. However, we have assumed that Z has no Du Val
singularities.

Step 2: ∆i = An or Dn.
Suppose there is a ∆i = En for some n. Let C be the center of ∆i, and

C1, C2, C3 the rational curves in ∆i which intersect C. Suppose C1 is the twig
of length one. By the uniqueness of C and C1, they are g-stable. If C is not
g-fixed, then ∆i = E6 and g switches the other two twigs, which contradicts
g3 = id. If C is g-fixed, then each irreducible curve in ∆i is g-stable. Let
C2 −C′

2 be a twig of ∆i. Then C′
2 is not g-fixed and it does not intersect with

any g-fixed curve, which contradicts Lemma 10.

Step 3. Every irreducible curve in ∆i is g-stable.
i) Let ∆i = An. Write the irreducible curves in ∆i as a chain C1 − C2 −

· · · − Cn. For n > 1, if C1 is not g-stable, we must have g(C1) = Cn and
g(Cn) = g(C1), and this contradicts g3 = id.

ii) Let ∆i = Dn. Then by the uniqueness its center C is g-stable. Let C1 and
C2 be twigs of length one, and C3 the curve of another twig which intersects
C.

Suppose n > 4. Then every irreducible component in the longest twig shall
be g-stable. If C1 is not g-stable, then g(C1) = C2 and g(C2) = C1, which
contradicts g3 = id. Thus, every irreducible curve in ∆i is g-stable. Suppose
n = 4. If C1 is not g-stable, we must have g(C1) = C2, g(C2) = C3 and
g(C3) = g(C1). In particular, C is not g-fixed, and it does not intersect with
any g-fixed curve. This contradicts Lemma 10. Therefore, C1 is g-stable. We
see similarly as in the case n > 4 that C2 and C3 are both g-stable.

Step 4. The g-fixed curves of ∆i are described as follows.
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We use “f” to denote g-fixed curves, and “s” to denote g-stable but not
g-fixed curves in ∆i. k is the number of g-fixed curves in ∆i.

i) Suppose ∆i = An.

a) n = 3k − 2:

f s s f s · · · s s f

b) n = 3k − 1:

f s s f s · · · s f s

c) n = 3k:

s f s s f · · · s f s

ii) Suppose ∆i = Dn.

a) n = 3k:
s

s f s s f · · · s s f

b) n = 3k + 1:

s

s f s s f · · · s f s

The case ∆i = An follows from Lemma 10. Suppose ∆i = Dn. Then by
Step 3, the center C is g-fixed. So in the longest twig C3 −C4 − · · · −Cn−1 of
∆i, by induction, C3j+2 are g-fixed and others are not. If n = 3k + 2 for some
k, then Cn−2 and Cn−1 are not g-fixed, and Cn−1 does not intersect with any
g-fixed curve, a contradiction to Lemma 10. Therefore, n 6≡ 2 (mod 3).

Step 5. (S, g) ≃ (S3, g3).
Let M be the number of isolated g-fixed points and N the number of g-fixed

curves in ∆. We can decompose

∆ =
a⊕

i=1

D3ℓi+1 ⊕
b⊕

i=1

D3mi
⊕

c⊕

i=1

A3pi
⊕

d⊕

i=1

A3qi−1 ⊕
e⊕

i=1

A3ri−2.

Then

N =

a∑

i=1

ℓi +

b∑

i=1

mi +

c∑

i=1

pi +

d∑

i=1

qi +

e∑

i=1

ri,

M ≥
a∑

i=1

(ℓi + 2) +

b∑

i=1

(mi + 1) +

c∑

i=1

(pi + 1) +

d∑

i=1

qi +

e∑

i=1

(ri − 1)

= N + (2a+ b+ c− e).
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Thus, by Lemma 10, 3 = M −N ≥ 2a+ b+ c− e. Recall that

rank∆ = 18 =

a∑

i=1

(3ℓi + 1) +

b∑

i=1

3mi +

c∑

i=1

3pi +

d∑

i=1

(3qi − 1) +

e∑

i=1

(3ri − 2)

= 3N + a− d− 2e.

Or equivalently, N = 6 + −a+d+2e
3 . If N ≤ 5, then a ≥ d + 2e + 3, and we

would have

3 ≥ 2a+ b+ c− e ≥ 2(d+ 2e+ 3) + b+ c− e = b+ c+ 2d+ 3e+ 6 ≥ 6.

Therefore, N ≥ 6; and hence by Proposition 5, N = 6 and M = 9. Further-
more, we have (S, g) ≃ (S3, g3).

Step 6. Determine the Dynkin’s type of ∆.
Solving the system

d+ 2e = a and 2a+ b+ c− e ≤ 3,

we have 13 nonnegative integer solutions. So there are 13 types of ∆ as listed
in Proposition 11. �

To be more precise, we list all the 48 possible types of ∆ in Table 1 in
Section 5. Note that in Steps 3 and 4, we proved that each irreducible curve
in ∆ g-stable, and the action of g on ∆ is uniquely determined, which is also
included in Table 1. The case I = 3 for Main Theorem (5) is proved.

If ∆ can be obtained from the 24 g-stable rational curves in S3 (Figure 1)
which contains the 6 g-fixed curves and satisfies the condition in the proof of
Proposition 11 Step 4, let S3 → S̄ be the contraction of ∆, then the automor-
phism g3 on S3 induces an automorphism on S̄. We see that Z = S̄/〈g3〉 is a
required log Enriques surface of type ∆. By verification, 40 cases are realizable.
The detailed list is given in Table 1(A). Thus, we have completed the proof of
Main Theorem (3).

Unfortunately, the remaining 8 cases are not realizable by the 24 curves on
S3, which are given in Table 1(B). We are unable to determine their realizability.

4.2. Classification when I = 2

Let (S, g) be a pair of a smooth K3 surface S and an automorphism g of S.
We assume that g∗ωS = −ωS for a nowhere vanishing holomorphic 2-form ωS

on S.
If P ∈ S is an isolated g-fixed point, then g∗ can be written as diag(−1,−1)

under some appropriate local coordinates around P . However, this contradicts
the assumption that g∗ωS = −ωS. So S has no isolated g-fixed point. Let
C be a g-fixed irreducible curve and let Q ∈ C. Then g∗ can be written as
diag(1,−1) under some appropriate local coordinates around Q. So the g-fixed
curves are smooth and mutually disjoint.

We need to use the following lemma in the classification.
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Lemma 12 (“Two Go” Lemma, [6, Lemma 3.2]). Let (S, g) be a pair of smooth

K3 surface and an automorphism g of S. Assume that g2 = id and g∗ωS =
−ωS.

1) If C1−C2 is a linear chain of g-stable smooth rational curves, then exactly

one of Ci is g-fixed.

2) If C1 and C2 are g-stable but not g-fixed smooth rational curves, then

C1 · C2 is even.

3) If C is a g-stable but not g-fixed smooth rational curve, then C has exactly

2 g-fixed points.

Suppose I(Z) = 2. Then the associated pair satisfies the conditions in
Lemma 12. We can now determine the possible Dynkin’s types of (S, g).

Proposition 13. With the notations as in Main Theorem. Suppose I = 2.
Then (S, g) ≃ (S2, g2), the Shioda-Inose’s pair of discriminant 4. Moreover, ∆
is of the type A2m−1 ⊕A2n−1, where m+ n = 10.

Proof. Since I = 2 is a prime, each connected component ∆i of ∆ must be
g-stable because Z is assumed to have no Du Val singular points.

Step 1. ∆i = An.
Suppose ∆i = Dn or En. Let C be the center of ∆i. Then C meets exactly

3 smooth rational curves in ∆i, say C1, C2, C3. By uniqueness, C is g-stable,
and g({C1, C2, C3}) = {C1, C2, C3}.

If every Cj is g-stable, then C has at least 3 g-fixed points, and it is g-fixed.
Hence, Cj are not g-fixed. On the other hand, each Cj contains two g-fixed
points, and one of them is not in C. There would be another g-fixed curve
C′

j in ∆i which intersects Cj , j = 1, 2, 3, a contradiction. Suppose C1 is not
g-stable, say g(C1) = C2. Then g(C2) = C1 and C is not g-fixed. Since C3 is
g-stable, by Lemma 12 it is also g-fixed. However, one of the two g-fixed points
on C is not contained in C3, so C should intersect with another g-fixed curve
in ∆i, a contradiction again.

Therefore, we can express ∆i = An as a linear chain of smooth rational
curves: C1 − C2 − · · · − Cn.

Step 2. Each Cj is g-stable.
Suppose g(C1) 6= C1. Then g(C1) = Cn, and consequently g(Cj) = Cn−j

for all j. There are two cases.
i) If m = 2k, let {P} = Ck ∩ Ck+1, then P would be an isolated g-fixed

point, absurd.
ii) If m = 2k − 1, then Ck is g-stable, and there would be a g-fixed curve

which intersects Ck. But ∆i contains no g-fixed curve, a contradiction.
Therefore, g(C1) = C1 and it follows that each Cj is g-stable.

Step 3. ∆i = A2m−1.
Note that each g-stable but not g-fixed curve must intersect g-fixed curves

at two points. So C1 is g-fixed and C2 is not. Consequently, each C2j−1 is
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g-fixed and C2j is not. With the same reason, Cn must be g-fixed. So n is odd.
Therefore, ∆i = An has the form

f s f s f · · · f s f

where “f” denotes the g-fixed curves and “s” denotes the g-stable but not
g-fixed curves in ∆i.

Step 4. Determine the Dynkin type of ∆.
Decompose ∆ =

⊕r
i=1 A2ni−1. Recall that every smooth rational g-fixed

curve in S is contained in ∆. Let N be the number of smooth rational g-fixed
curves in S. Then N =

∑r
i=1 ni and

18 = rank∆ =
r∑

i=1

(2ni − 1) = 2N − r.

So we have

N =
18 + r

2
> 9.

Then N ≥ 10. It follows from Proposition 8 that N = 10 and (S, g) ≃ (S2, g2).
Moreover, r = 2. This completes the proof. �

We have the following configurations for ∆:

A1 ⊕A17, A3 ⊕A15, A5 ⊕A13, A7 ⊕A11, A9 ⊕A9.

Similarly as in the case when I = 3, if Sg
2 ⊆ ∆ and the divisor ∆ can be

obtained from the 24 smooth rational curves in S2 (Figure 2) which satisfies the
conditions in the proof of Proposition 13 Step 3, let S2 → S̄ be the contraction
of ∆, then the automorphism g2 on S2 induces an automorphism on S̄, and
Z := S̄/〈g2〉 is a required log Enriques surface of Dynkin’s type ∆.

We can easily verify that these 5 cases are all realizable (cf. Table 2). We
have proved Main Theorem (2). By noting the results in Steps 2 and 3 in the
proof of Proposition 13, Main Theorem (5) for case I = 2 is also proved.

4.3. Classification when I = 4

Let (S, g) be a pair of a smooth K3 surface S and an automorphism g of
S. Assume that g4 = id and g∗ωS = iωS for a nowhere vanishing holomorphic
2-form on S, where i =

√
−1. Let P be an isolated g-fixed point. Then g∗

can be written as diag(−1,−i) near P with appropriate coordinates. Let C
be a g-fixed irreducible curve and Q a point in C. Then g∗ can be written as
diag(1, i) near Q with appropriate coordinates.

Similarly as in the case I = 2 (Lemma 12) or I = 3 (Lemma 10), we can
state and prove the following lemma.

Lemma 14 (“Four Go” Lemma). Let (S, g) be a pair of smooth K3 surface S
and an automorphism g of S. Assume that g4 = id and g∗ωS = iωS.
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1) Let C1 − C2 − C3 − C4 be a chain of g-stable smooth rational curves.

Then exactly one of Cj is g-fixed, and exactly one of Ck is g2-fixed but

not g-fixed. Moreover, {j, k} = {1, 3} or {2, 4}.
2) Let C be a g-stable but not h-fixed smooth rational curve on S. Then

there exists a unique g-fixed curve D1 and a unique g2-fixed but not g-
fixed curve D2 such that C ·D1 = C ·D2 = 1.

3) Let M and N be the number of smooth rational curves and the number of

isolated points in Sg, respectively. Then M − 2N = 4.

Proof. 1) Applying Lemma 12 to h := g2, we may assume that C1, C3 are
h-fixed and C2, C4 are not. Note that {P} = C1 ∩ C2 and {Q} = C2 ∩ C3

are g-fixed. The action of g on the tangent space TC2,P of C2 at P is the
multiplicative of i or −i, and the action of g on TC2,Q is the multiplicative of
−i or i, respectively. For the first case, C1 is g-fixed and C3 not; and conversely
for the second case.

2) Let P and Q be the g-fixed points on C. Then the actions of g on TC,P

and TC,Q are the multiplication of i and −i, respectively. So there is a unique
g-fixed curve passing through P and a unique h-fixed but not g-fixed curve
passing through Q.

3) We can write

Sg = {P1}
∐

· · ·
∐

{PM}
∐

C1

∐
· · ·

∐
CN ,

where Pj are the isolated g-fixed points, and Ck are the smooth irreducible
rational g-fixed curves of S. Consider the holomorphic Lefschetz number L(g),
which can be evaluated in two different ways.

Method 1. L(g) =
2∑

i=0

(−1)i tr(g∗|Hi(S,OS)) (cf. [1, §3]).

We see that H0(S,OS) ≃ C, H1(S,OS) = 0, and by Serre duality

H2(S,OS) ≃ H0(S,OS(KS))
∨ = H0(S,OS)

∨.

Then g∗|H0(S,OS) = id, g∗|H1(S,OS) = 0 and g∗|H2(S,OS) = i−1 = −i.

Method 2. L(g) =

M∑

j=1

a(Pj) +

N∑

k=1

b(Ck).

a(Pj) : =
1

det(1− g∗|TPj
)
,

b(Ck) : =
1− π(Ck)

1− λ−1
k

− λ−1
k

(1− λ−1
k )2

(Ck)
2,

where π(Ck) is the genus and (Ck)
2 is the self-intersection number of Ck, and

λk is the eigenvalue of g∗ on the normal bundle of Ck (cf. [2, §4]).
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Recall that g∗|TPj
= diag(−1,−i). Then

a(Pj) =
1

(1 + 1)(1 + i)
=

1− i

4
.

Since g∗|TQk
= diag(1, i) near Qk ∈ Ck, λk = i−1 is the eigenvalue of g∗ on the

normal bundle. So

b(Ck) =
1− 0

1− i
− i

(1− i)2
(−2) = −1− i

2
.

Therefore, 1− i =
M

4
(1− i)− N

2
(1 − i); that is, M − 2N = 4. �

Now suppose I(Z) = 4. Then the associated pair (S, g) satisfies the condi-
tions in Lemmas 9 and 14. Set h := g2. First of all, we claim that:

Lemma 15. With the notations as in Main Theorem and above, each connected

component ∆i of ∆ is h-stable.

Proof. Suppose ∆i is not h-stable. Then ∆i, g(∆i), h(∆i) and g3(∆i) are
distinct components in ∆, and they are contracted to Du Val singular points
on S̄/〈g〉, a contradiction to our assumption. �

Therefore, applying Proposition 8 to (S, h) we have (S, h) ≃ (S2, g2), the
Shioda-Inose’s pair of discriminant 4. From now on, we set (S, h) = (S2, g2).
Since is known that (g∗2)

2=id on Pic(S), we can write g∗|Pic(S)⊗C=diag(Is,−It),
where s+ t = ρ(S) = 20. Let x ∈ TS. Suppose g∗x = ±x. Then

x · ωS = g∗(x · ωS) = g∗x · g∗ωS = ±x · iωS = ±i(x · ωS).

It follows that x · ωS = 0. Then x ∈ Pic(S) ∩ TS = {0}. So ±1 are not
eigenvalues of g∗|TS⊗C. By Lemma 9, we can thus write g∗|TS⊗C = diag(i,−i).

Proposition 16. With the notations as in Main Theorem. Suppose I = 4.
Let h = g2. Then (S, h) ≃ (S2, g2), the Shioda-Inose’s pair of discriminant 4.
Moreover, ∆ is of the type A1 ⊕A17, A5 ⊕A13 or A9 ⊕A9.

Proof. We only need to check the second assertion. Let M be the number of
isolated g-fixed points and N the number of smooth irreducible g-fixed curves.
By Lemma 14, we have M − 2N = 4.

Step 1. N ≤ 4.
We apply the topological Lefschetz fixed point theorem (cf. [7, Lemma 1.6]),

χtop(S
g) =

4∑

i=0

(−1)i tr(g∗|Hi(S,Q)).

The left-hand side is M + 2N = 4N + 4, and the right-hand side is

2 + tr(g∗|Pic(S)⊗C) + tr(g∗|TS⊗C) = 2 + s− t.



THE CLASSIFICATION OF LOG ENRIQUES SURFACES OF RANK 18 811

where g∗|Pic(S)⊗C = diag(Is,−It). Since s+ t = ρ(S) = 20, we have

s = 11 + 2N and t = 9− 2N.

It follows that N ≤ 4.

Step 2. ∆ = A2m−1 ⊕A2n−1, where m+ n = 10.
This follows immediately from Proposition 13.

Step 3. ∆ 6= A3 ⊕A15 and ∆ 6= A7 ⊕A11. So Proposition 16 will follow.
i) Suppose ∆ = A3⊕A15. Denote A3 = C1−C2−C3 and A15 = D1−D2−

· · · −D15. Then it follows from the proof of Proposition 13 that all Ci and Dj

are h-stable, and from which

C1, C3, D1, D3, D5, D7, D9, D11, D13, D15

are h-fixed and others are not. Clearly each connected component is g-stable,
and Aut(∆) = (Z/2Z)⊕(Z/2Z). Note that g(C1) = C1 or C3. For each case C2

is g-stable but not h-fixed. By Lemma 14, C2 intersects with a unique g-fixed
curve. Then C1 or C3 is g-stable, and therefore all Ci are g-stable. Similarly,
by noting that D8 is g-stable but not h-fixed, we see that all Dj are g-stable.
By Lemma 14 again, C1, D1, D5, D9, D13 must be g-fixed. But this contradicts
N ≤ 4.

ii) Suppose ∆ = A7 ⊕ A11. Denote A7 = C1 − C2 − · · · − C7 and A11 =
D1 −D2 − · · · −D11. Then using the same argument as for A3 ⊕ A15, we can
show that Ci and Dj are g-stable for all i, j, and therefore C1, C5, D1, D5, D9

are g-fixed. This contradicts N ≤ 4 again. �

Proof of Main Theorem (4). It remains to show that A1 ⊕ A17, A5 ⊕A13 and
A9 ⊕A9 are realizable.

Let g4 be the automorphism of S2 induced by the action diag(i, 1) on E2
ζ4
.

Then g24 = g2 as in Definition 6. From the construction of the 24 rational
curves in S2 (Figure 2), we see that

I) 4 curves are g4-fixed, say F1, F2 and G1, G3;

II) 6 curves are g2-fixed but not g4-fixed, say F2, G2, H11, H13, H31, H33;

III) g4(H22) = H ′
22 and g4(H

′
22) = H22;

IV) the remaining 12 curves are g4-stable, but not g2-fixed.

Let g := g4 and h := g2. Then ∆ contains exactly 4 g-fixed curves (i.e.,
N = 4), and 6 h-fixed but not g-fixed curves. Consider the following three
possible types of ∆.

i) A1 ⊕A17.
Since A1 contains at most 1 g-fixed curve, A17 must contain at least 3 g-fixed

curves. Then every curve in A17 is g-stable. Moreover, it contains 9 h-fixed
curves. Noting that ∆ has exactly 4 g-fixed curves, we see that C3, C7, C11, C15

are the g-fixed curves and C1, C5, C9, C13, C17, A1 are the h-fixed but not g-fixed
curves.
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ii) A5 ⊕A13.
Since A5 contains at most 2 g-fixed curves, A13 has a g-fixed curve. So every

curve in A13 is g-stable. We write

A5 = C1 − C2 − C3 − C4 − C5,

A13 = D1 −D2 −D3 − · · · −D13.

If C1 is not g-stable, then only C3 in A5 is h-fixed. Note that it is not g-fixed.
Then A13 shall contain 4 g-fixed curves: D1, D5, D9, D13. However, ∆ would
have only 5 h-fixed but not g-fixed curvesD3, D7, D11, D15, C3, a contradiction.
Therefore, every curve in A5 is g-stable. Then A5 contains at least 1 g-fixed
curve, and A13 contains at most 3 g-fixed curves. It follows that exactly 4
curves C3, D3, D7, D11 in ∆ are g-fixed.

iii) A9 ⊕A9.
We call the second A9 as A′

9. If A9 is not g-stable, then g(A9) = A′
9 and

g(A′
9) = A9. There would be no g-fixed curve in ∆, absurd. So both A9 and A′

9

are g-stable. Since A9 contains at most 3 g-fixed curves, A′
9 contains at least

1 g-fixed curve. Hence every curve in A′
9 is g-stable. Similarly, every curve in

A9 is g-stable. On the other hand, A9 should contain at least 2 g-fixed curves,
so does A′

9. If we write

A9 = C1 − C2 − C3 − · · · − C9,

A′
9 = D1 −D2 −D3 − · · · −D9,

then exactly C3, C7, D3 and D7 are g-fixed.

Since we have determined the action of g on ∆ and these ∆ can be obtained
from the 22 g-stable rational curves in S2 (Figure 2), they are all realizable.
The dual graphs are given in Table 2 (1), (3) and (5). �

Note that in the proof of above, we showed that for each of the every cases,
every irreducible curve in ∆ is g-stable.

4.4. Impossibility of I = 6

In order to complete the proof of Main Theorem, in this section we will
explore the method used in [4, Proposition 2.12, Lemma 2.13] to prove the
following.

Proposition 17. With the notations in Main Theorem, I 6= 6.

Proof. We assume that there is a log Enriques surface Z of rank 18 without
Du Val singularities. Let (S, g) be the associated pair. Let P be an isolated
g-fixed point. Then g∗ can be written as either

i) diag(ζ26 , ζ
5
6 ), or

ii) diag(ζ36 , ζ
4
6 )
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with appropriate coordinates around P .

Step 1. There are even number of isolated g-fixed points of the second type.
Suppose g∗ = diag(ζ26 , ζ

5
6 ) near P . Then (g2)∗ = (ζ46 , ζ

4
6 ) near P . It follows

that P is an isolated g2-fixed point. Suppose g∗ = diag(ζ36 , ζ
4
6 ) near P . Then

(g2)∗ = diag(1, ζ26 ), and there exists a unique smooth rational g2-fixed curve C

passing through P . Since Sg2

is smooth, C is g-stable but not g-fixed. Let Q
be the other g-fixed point on C. Since Q is not an isolated g2-fixed point, it is
also an isolated g-fixed point of the second type. Therefore, the g-fixed points
of the second type come in pairs. There are even number of such points.

Step 2. The number of isolated g-fixed points of the first type equals that
of the second type.

Let P be an isolated g-fixed point. Since Sg ⊆ Sg3

, a disjoint union of
smooth rational curves, there is a unique g3-fixed curve C passing through P .
Hence, C is g-stable but not g-fixed, and it contains exactly 2 g-fixed points.
Note that if P is of the first type diag(ζ26 , ζ

5
6 ), then g∗|TC,P

= ζ26 ; if P is of the

second type diag(ζ36 , ζ
4
6 ), then g∗|TC,P

= ζ46 . So the other isolated g-fixed point
on C is of different type of P . Therefore, there is a one-to-one correspondence
between the set of g-fixed points of the first type and that of the second type.
Step 2 is proved.

Now we can set P1, . . . , P2ℓ and Q1, . . . , Q2ℓ to be the isolated Sg-fixed points
of type diag(ζ26 , ζ

5
6 ) and of type diag(ζ36 , ζ

4
6 ), respectively. Suppose there are c

rational smooth g-fixed curves, say C1, . . . , Cc. We claim that

Step 3. ℓ = c+ 1.
Similarly as in the proof of Lemma 14, we use the holomorphic Lefschetz

fixed point formula

L(g) =

2∑

i=0

(−1)i tr(g∗|Hi(S,OS)) =

2ℓ∑

i=1

a(Pi) +

2ℓ∑

i=1

a(Qi) +

c∑

i=1

b(Ci).

We can compute that

2∑

i=0

(−1)i tr(g∗|Hi(S,OS)) = 1 + 0 +
1

ζ6
=

3− i
√
3

2
,

a(Pi) =
1

det(1− g∗|TPi
)
=

1

(1− ζ26 )(1− ζ56 )
=

3− i
√
3

6
,

a(Qi) =
1

det(1− g∗|TQi
)
=

1

(1− ζ36 )(1 − ζ46 )
=

3− i
√
3

12
,

b(Ci) =
1− π(Ci)

1− ζ6
− ζ6 C

2
i

(1 − ζ6)2
= −3− i

√
3

2
.

Therefore, ℓ = c+ 1.
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Step 4. Determine Sg2

.
If P is a g2-fixed but not g-fixed point, then so is g(P ). Therefore, there

are even number of g2-fixed but not g-fixed points. If C is a rational smooth
irreducible g2-fixed curve which does not contain any g-fixed point, so is g(C).
Hence, there are even number of such curves.

Suppose the isolated g2-fixed points are P1, . . . , P2c+2, R1, . . . , R2k, and the
smooth rational g2-fixed curves are C1, . . . , Cc, D1, . . . , Dc+1, . . . , F1, . . . , F2p,
where Ri is not g-fixed, Q2i−1, Q2i ∈ Di, and Fi does not contain at g-fixed
point. Then apply Lemma 10 to (S, g2), we obtain

(2c+ 2 + 2k)− (c+ c+ 1+ 2p) = 3,

which implies k = p+ 1.

Step 5. Determine Sg3

.
We note g3 is a non-symplectic involution on S, and so there is no isolated

g3-fixed point. If G is a g3-fixed curve which does not contain any g-fixed
point, then so are g(G) and g2(G). Therefore, the smooth rational g3-fixed
curves are C1, . . . , Cc, E1, . . . , E2c+2, G1, . . . , G3q, where Pi, Qi ∈ Ei and Gi

does not contain any g-fixed point.

Step 6. c+ p+ q ≤ 2.
Since ord(g) = 6, we can write

g∗|H2(S,Q) = diag(Iα,−Iβ , ζ
2
6Iγ , ζ̄

2
6Iγ , ζ6I1+δ, ζ̄6I1+δ),

where α, β, γ, δ ≥ 0. Let j = 1 in the topological Lefschetz fixed point formula

χtop(S
gj

) =
4∑

i=0

(−1)i tr((gj)∗|Hi(S,Q)).

We have

(2c+ 2) + (2c+ 2) + 2 · c = 2 + α− β − γ + (δ + 1).

(g2)∗|H2(S,Q) = diag(Iα+β , ζ
2
6Iγ+δ+1, ζ̄

2
6Iγ+δ+1). Then for j = 2 we have

(2c+ 2) + (2p+ 2) + 2[c+ (c+ 1) + 2p] = 2 + (α+ β)− (γ + δ + 1).

(g3)∗|H2(S,Q) = diag(Iα+2γ ,−Iβ+2+2δ). Then for j = 3 we have

2[c+ (2c+ 2) + 3q] = 2 + (α+ 2γ)− (β + 2 + 2δ).

We also note that

α+ β + 2γ + 2(1 + δ) = dimH2(S,Q) = 22.

It can be solved that δ = −c− p− q + 2. In particular, c+ p+ q ≤ 2.

Step 7. Determine the possible types of ∆.
Let ∆i be a connected component of ∆. Then ∆i is either g

3-stable or g2-
stable, otherwise gk(∆i), k = 0, . . . , 5, would be contracted to a single Du Val
singular point in S̄/〈g〉, which should not exist by assumption.
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Suppose ∆i, i = 1, . . . ,m, are the g3-stable connected components of ∆.
Since (g3)∗ωS = −ωS , using the same argument as for I = 2, we see that
∆i = A2mi−1 for some mi, which contains exactly mi smooth rational g3-fixed
curves. On the other hand, by computation in Step 4, there are c+(2c+c)+3q =
3(c+ q) + 2 g-fixed curves. Therefore,

n∑

i=1

rank∆i =

m∑

i=1

(2mi − 1) = 6(c+ q) + 4−m.

Since ℓ = c+ 1 > 0, Sg 6= ∅. We see that m ≥ 1.
Suppose ∆′

j , j = 1, . . . , n, are the g2-stable but not g-stable connected com-

ponents of ∆. Since (g2)∗ωS = ζ3ωS , using the same argument as for I = 3,
we see that each ∆′

j has Dynkin type A or D.

Since each ∆′
j contains at least one g2-fixed curve and F1, . . . , F2p are the

only g2-fixed curves in ∆′
j , we have n ≤ 2p. On the other hand, from the proof

of Proposition 11 Step 4, if rank∆′
j = αj , then ∆j contains at least ⌈(αj−1)/3⌉

smooth g2-fixed curves. We have an estimation

2p ≥
n∑

j=1

⌈(αj − 1)/3⌉ ≥
n∑

j=1

(αj − 1)/3.

That is,
n∑

j=1

rank∆′
j ≤ 6p+ n.

Note that ∆′
j is not g3-stable, otherwise it would also be g-stable. So ∆′

j and

g3(∆′
j) are disjoint connected components in ∆. In particular, n is even. It

follows from rank∆ = 18 that

18 ≤ 6(c+ q) + 4−m+ 6p+ n = 6(c+ p+ q) + 4−m+ n

≤ 6 · 2 + 4−m+ n = 16−m+ n

≤ 16− 1 + n = 15 + n

≤ 15 + 2p.

Then p ≥ 2 and it follows from c+ p+ q ≤ 2 that p = 2 and c = q = 0. So ∆
has no g-fixed curve. Since n is even, n = 4 and m = 1 or 2. We are left to
show that these two cases are impossible.

Recall that ∆i has the form A2mi−1 and contains exactly mi g
3-fixed curves,

and the 2 irreducible g3-fixed curves are contained in
∐m

i=1 ∆i. We have∑m
i=1 mi = 2.
If m = 1, then m1 = 2 and ∆1 = A3. However, this would imply that∑4
j=1 rank∆

′
j = 15, which needs to be even. If m = 2, then m1 = m2 = 1 and

∆1 = ∆2 = A1. They are g3-fixed. On the other hand, note that ord(g2) = 3.
By considering the g2-action on ∆, we see that ∆1 and ∆2 are also g2-fixed. It
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follows that ∆1 and ∆2 g-fixed, which contradicts our computation that there
is no g-fixed curve. �

This completes the proof of Proposition 17 and also Main Theorem (1).

5. The list of Dynkin’s types of ∆

Table 1. I = 3

“f” denotes the g-fixed curve and s denotes the g-stable but not g-fixed
curve. We use the same labeling for curves as in Figure 1.

(A) Realizable Cases.

Case I: A18: s− f − s− s− f − s− s− f − s− s− f − s− s− f − s− s− f − s

E33 −G3 −E13 −E′
13 −F1 −E′

11 −E11 −G1 −E31 −E′
31 −F3 −E′

32 −E32 −G2 −

E22 −E′
22 − F2 − E′

21.

Case II: D18:
s

s
> f − s− s− f − s− s− f − s− s− f − s− s− f − s− s− f

E′
11

E′
12

> F1 −E
′
13 −E13 −G3 −E33 −E

′
33 −F3 −E

′
31 −E31 −G1 −E21 −E

′
21 −F2 −

E
′
22 −E22 −G2

Case III: A3m ⊕A3n, where m+ n = 6, 1 ≤ m ≤ n ≤ 5.
(1) A3 ⊕ A15: s− f − s, s− f − s− s− f − s− s− f − s− s− f − s− s− f − s

E′
11 − F1 −E′

12

E13−G3−E33−E′
33−F3−E′

31−E31−G1−E21−E′
21−F2−E′

22−E22−G2−E32

(2) A6 ⊕ A12: s− f − s− s− f − s, s− f − s− s− f − s− s− f − s− s− f − s

E21 −G1 − E11 − E′
11 − F1 − E′

12

E13 −G3 − E23 − E′
23 − F2 − E′

22 − E22 −G2 − E32 − E′
32 − F3 − E′

33

(3) A9 ⊕A9: s− f − s− s− f − s− s− f − s, s− f − s− s− f − s− s− f − s

E′
11 − F1 −E′

12 − E12 −G2 − E22 − E′
22 − F2 − E′

23

E13 −G3 − E33 − E′
33 − F3 − E′

31 − E31 −G1 − E21

Case IV: D3m ⊕ A3n, where m+ n = 6.

(1) D6 ⊕ A12:
s

s
> f − s− s− f , s− f − s− s− f − s− s− f − s− s− f − s

E′
11

E′
12

> F1 − E
′
13 − E13 −G3

E′
33 − F3 −E′

32 − E32 −G2 − E22 − E′
22 − F2 − E′

21 − E21 −G1 − E31

(2) D9 ⊕ A9:
s

s
> f − s− s− f − s− s− f , s− f − s− s− f − s− s− f − s

E′
11

E′
12

> F1 − E
′
13 − E13 −G3 −E23 − E

′
23 − F2

E22 −G2 − E32 − E′
32 − F3 − E′

31 − E31 −G1 − E21

(3) D12 ⊕A6:
s

s
> f − s− s− f − s− s− f − s− s− f , s− f − s− s− f − s

E′
11

E′
12

> F1 − E
′
13 − E13 −G3 −E23 − E

′
23 − F2 − E

′
22 − E22 −G2

E′
33 − F3 −E′

31 − E31 −G1 − E21

(4) D15 ⊕A3:
s

s
> f − s− s− f − s− s− f − s− s− f − s− s− f , s− f − s
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E′
11

E′
12

> F1 −E
′
13 −E13 −G3 −E23 −E

′
23 − F2 −E

′
21 −E21 −G1 −E31 −E

′
31 − F3

E22 −G2 − E32

Case V: D3m ⊕D3n, where m+ n = 6, 2 ≤ m ≤ n ≤ 4.

(1) D6 ⊕D12:
s

s
> f − s− s− f ,

s

s
> f − s− s− f − s− s− f − s− s− f .

E′
11

E′
12

> F1 − E
′
13 − E13 −G3

E′
33

E′
32

> F3 − E
′
31 − E31 −G1 −E21 − E

′
21 − F2 − E

′
22 − E22 −G2

Case VI: D3n+1 ⊕ A3m−1, m+ n = 6, 1 ≤ m,n ≤ 5.

(1) D4 ⊕ A14:
s

s
> f − s, f − s− s− f − s− s− f − s− s− f − s− s− f − s

E′
11

E′
12

> F1 − E
′
13

G3 −E23 −E′
23 − F2 −E′

21 −E21 −G1 −E31 −E′
31 − F3 −E′

32 −E32 −G2 −E22

(2) D7 ⊕ A11:
s

s
> f − s− s− f − s, f − s− s− f − s− s− f − s− s− f − s

E′
11

E′
12

> F1 − E
′
13 − E13 −G3 −E23

G2 − E22 − E′
22 − F2 −E′

21 − E21 −G1 − E31 − E′
31 − F3 − E′

33

(3) D10 ⊕A8:
s

s
> f − s− s− f − s− s− f − s, f − s− s− f − s− s− f − s

E′
11

E′
12

> F1 − E
′
13 − E13 −G3 −E23 − E

′
23 − F2 − E

′
21

G1 − E31 − E′
31 − F3 −E′

32 − E32 −G2 − E22

(4) D13 ⊕A5:
s

s
> f − s− s− f − s− s− f − s− s− f − s, f − s− s− f − s

E′
11

E′
12

> F1 − E
′
13 − E13 −G3 −E33 − E

′
33 − F3 − E

′
31 − E31 −G1 − E21

G2 − E22 − E′
22 − F2 −E′

23

(5) D16 ⊕A2:
s

s
> f − s− s− f − s− s− f − s− s− f − s, f − s

E′
11

E′
12

> F1−E
′
13−E13−G3−E23−E

′
23−F2−E

′
21−E21−G1−E31−E

′
31−F3−E

′
32

Case VII: A3m ⊕ A3n ⊕A3r, m+ n+ r = 6, 1 ≤ m ≤ n ≤ r ≤ 4.
(1) A3 ⊕A3 ⊕A12: s− f − s, s− f − s, s− f − s− s− f − s− s− f − s− s− f − s

E13 −G3 − E23

E′
32 − F3 −E′

33

E′
11 − F1 −E′

12 − E12 −G2 − E22 − E′
22 − F2 − E′

21 − E21 −G1 − E31

(2) A3 ⊕A6 ⊕A9: s− f − s, s− f − s− s− f − s, s− f − s− s− f − s− s− f − s

E13 −G3 − E33

E21 −G1 − E31 − E′
31 − F3 − E′

32

E′
11 − F1 −E′

12 − E12 −G2 − E22 − E′
22 − F2 − E′

23

(3) A6 ⊕A6 ⊕A6: s− f − s− s− f − s, s− f − s− s− f − s, s− f − s− s− f − s

E′
11 − F1 −E′

12 − E12 −G2 − E22

E13 −G3 − E33 − E′
33 − F3 − E′

32

E′
23 − F2 −E′

21 − E21 −G1 − E31

Case VIII: D6 ⊕D6 ⊕D6:
s

s
> f − s− s− f ,

s

s
> f − s− s− f ,

s

s
> f − s− s− f

E′
11

E′
12

> F1 − E
′
13 − E13 −G3
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E′
21

E′
23

> F2 − E
′
22 − E22 −G2

E′
32

E′
33

> F3 − E
′
31 − E31 −G1

Case X: A3m ⊕A3n ⊕D3r, where m+ n+ r = 6, m ≤ n.

(1) A3 ⊕A3 ⊕D12: s− f − s, s− f − s,
s

s
> f − s− s− f − s− s− f − s− s− f

E22 −G2 − E32

E′
31 − F3 −E′

33

E′
11

E′
12

> F1 − E
′
13 − E13 −G3 −E23 − E

′
23 − F2 − E

′
21 − E21 −G1

(2) A3 ⊕ A6 ⊕D9: s− f − s, s− f − s− s− f − s,
s

s
> f − s− s− f − s− s− f

E22 −G2 − E32

E21 −G1 − E31 − E′
31 − F3 − E′

33

E′
11

E′
12

> F1 − E
′
13 − E13 −G3 −E23 − E

′
23 − F2

(3) A3 ⊕A9 ⊕D6: s− f − s, s− f − s− s− f − s− s− f − s,
s

s
> f − s− s− f .

E22 −G2 − E32

E′
23 − F2 −E′

21 − E21 −G1 − E31 − E′
31 − F3 − E′

33

E′
11

E′
12

> F1 − E
′
13 − E13 −G3

(4) A6 ⊕ A6 ⊕D6: s− f − s− s− f − s, s− f − s− s− f − s,
s

s
> f − s− f − s

E22 −G2 − E32 − E′
32 − F3 − E′

33

E′
23 − F2 −E′

21 − E21 −G1 − E31

E′
11

E′
12

> F1 − E
′
13 − E13 −G3

Case XI: D3m+1 ⊕ A3n ⊕A3r−1, where m+ n+ r = 6.

(1) D4 ⊕A3 ⊕A11:
s

s
> f − s, s− f − s, f − s− s− f − s− s− f − s− s− f − s

E′
11

E′
12

> F1 − E
′
13

E21 −G1 − E31

F3 − E′
32 −E32 −G2 −E22 − E′

22 − F2 − E′
23 − E23 −G3 − E33

(2) D4 ⊕ A6 ⊕ A8:
s

s
> f − s, s− f − s− s− f − s, f − s− s− f − s− s− f − s

E′
11

E′
12

> F1 − E
′
13

E21 −G1 − E31 − E′
31 − F3 − E′

32

G2 − E22 − E′
22 − F2 −E′

23 − E23 −G3 − E33

(3) D4 ⊕ A9 ⊕ A5:
s

s
> f − s, s− f − s− s− f − s− s− f − s, f − s− s− f − s

E′
11

E′
12

> F1 − E
′
13

E21 −G1 − E31 − E′
31 − F3 − E′

33 − E33 −G3 − E23

F2 − E′
22 −E22 −G2 −E32

(4) D4 ⊕A12 ⊕A2:
s

s
> f − s, s− f − s− s− f − s− s− f − s− s− f − s, f − s

E′
11

E′
12

> F1 − E
′
13

E21 −G1 − E31 − E′
31 − F3 − E′

32 − E32 −G2 − E22 − E′
22 − F2 − E′

23
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G3 − E33

(5) D7 ⊕ A3 ⊕ A8:
s

s
> f − s− s− f − s, s− f − s, f − s− s− f − s− s− f − s

E′
11

E′
12

> F1 − E
′
13 − E13 −G3 −E33

E22 −G2 − E32

F3 − E′
31 −E31 −G1 −E21 − E′

21 − F2 − E′
23

(6) D7 ⊕ A6 ⊕ A5:
s

s
> f − s− s− f − s, s− f − s− s− f − s, f − s− s− f − s

E′
11

E′
12

> F1 − E
′
13 − E13 −G3 −E33

E′
23 − F2 −E′

22 − E22 −G2 − E32

F3 − E′
31 −E31 −G1 −E21

(7) D7 ⊕ A9 ⊕ A2:
s

s
> f − s− s− f − s, s− f − s− s− f − s− s− f − s, f − s

E′
11

E′
12

> F1 − E
′
13 − E13 −G3 −E33

E′
23 − F2 −E′

21 − E21 −G1 − E31 − E′
31 − F3 − E′

32

G2 − E22

(8) D10 ⊕A3 ⊕A5:
s

s
> f − s− s− f − s− s− f − s, s− f − s, f − s− s− f − s

E′
11

E′
12

> F1 − E
′
13 − E13 −G3 −E33 − E

′
33 − F3 − E

′
31

E22 −G2 − E32

G1 − E21 − E′
21 − F2 −E′

23

(9) D10 ⊕A6 ⊕A2:
s

s
> f − s− s− f − s− s− f − s, s− f − s− s− f − s, f − s

E′
11

E′
12

> F1 − E
′
13 − E13 −G3 −E33 − E

′
33 − F3 − E

′
31

E′
23 − F2 −E′

22 − E22 −G2 − E32

G1 − E21

(10) D13 ⊕ A3 ⊕ A2:
s

s
> f − s− s− f − s− s− f − s, s− f − s, f − s

E′
11

E′
12

> F1 − E
′
13 − E13 −G3 −E33 − E

′
33 − F3 − E

′
31 − E31 −G1 − E21

E22 −G2 − E32

F2 − E′
23

Case XII: D3m+1 ⊕D3n+1 ⊕ A3r−2, where m+ n+ r = 6, m ≤ n.

(2) D4 ⊕D7 ⊕ A7:
s

s
> f − s,

s

s
> f − s− s− f − s, f − s− s− f − s− s− f

E′
11

E′
12

> F1 − E
′
13

E′
21

E′
22

> F2 − E
′
23 − E23 −G3 −E33

G1 − E31 − E′
31 − F3 −E′

32 − E32 −G2

(5) D7 ⊕D7 ⊕ A4:
s

s
> f − s− s− f − s,

s

s
> f − s− s− f − s, f − s− s− f

E′
12

E′
13

> F1 − E
′
11 − E11 −G1 −E31

E′
21

E′
22

> F2 − E
′
23 − E23 −G3 −E33

G2 − E32 − E′
32 − F3
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(6) D7 ⊕D10 ⊕ A1:
s

s
> f − s− s− f − s,

s

s
> f − s− s− f − s− s− f − s, f

E′
12

E′
13

> F1 − E
′
11 − E11 −G1 −E31

E′
21

E′
22

> F2 − E
′
23 − E23 −G3 −E33 − E

′
33 − F3 − E

′
32

G2

Case XIII: D3n+1 ⊕D3m ⊕ A3r−1, where m+ n+ r = 6, m ≥ 2.

(3) D4 ⊕D12 ⊕ A2:
s

s
> f − s,

s

s
> f − s− s− f − s− s− f − s− s− f , f − s

E′
11

E′
12

> F1 − E
′
13

E′
21

E′
22

> F2 − E
′
23 − E23 −G3 −E33 − E

′
33 − F3 − E

′
31 − E31 −G1

G2 − E32

(4) D7 ⊕D6 ⊕ A5:
s

s
> f − s− s− f − s,

s

s
> f − s− s− f , f − s− s− f − s

E′
11

E′
12

> F1 − E
′
13 − E13 −G3 −E33

E′
22

E′
23

> F2 − E
′
21 − E21 −G1

G2 − E32 − E′
32 − F3 −E′

31

(5) D7 ⊕D9 ⊕ A2:
s

s
> f − s− s− f − s,

s

s
> f − s− s− f − s− s− f , f − s

E′
11

E′
12

> F1 − E
′
13 − E13 −G3 −E33

E′
22

E′
23

> F2 − E
′
21 − E21 −G1 −E31 − E

′
31 − F3

G2 − E32

(6) D10 ⊕D6 ⊕A2:
s

s
> f − s− s− f − s− s− f − s− s− f − s,

s

s
> f − s− s− f ,

f − s
E′

11

E′
12

> F1 − E
′
13 − E13 −G3 −E33 − E

′
33 − F3 − E

′
31

E′
22

E′
23

> F2 − E
′
21 − E21 −G1

G2 − E32

(B) Indeterminate Cases

Case V: (2) D9 ⊕D9:
s

s
> f − s− s− f − s− s− f ,

s

s
> f − s− s− f − s− s− f

Case IX: (1) A3 ⊕D6 ⊕D9: s− f − s,
s

s
> f − s− s− f ,

s

s
> f − s− s− f − s− s− f

Case IX: (2) A6 ⊕D6 ⊕D6: s− f − s− s− f − s,
s

s
> f − s− s− f ,

s

s
> f − s− s− f

Case XII: (1) D4 ⊕D4 ⊕ A10:
s

s
> f − s,

s

s
> f − s, f − s− s− f − s− s− f − s− s− f

Case XII: (3) D4 ⊕D10 ⊕A4:
s

s
> f − s,

s

s
> f − s− s− f − s− s− f − s, f − s− s− f

Case XII: (4) D4 ⊕D13 ⊕A1:
s

s
> f − s,

s

s
> f − s− s− f − s− s− f − s− s− f − s, f

Case XIII:(1) D4 ⊕D6 ⊕ A8:
s

s
> f − s,

s

s
> f − s− s− f , f − s− s− f − s− s− f − s
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Case XIII:(2) D4 ⊕D9 ⊕ A5:
s

s
> f − s,

s

s
> f − s− s− f − s− s− f , f − s− s− f − s.

Table 2. I = 2, 4

We use the same labeling as in Figure 2. For I = 2, “f” denotes the g-
fixed curve and s denotes the g-stable but not g-fixed curve. For I = 4, define
h = g2; “f” denotes the g-fixed curve, “h” denotes the h-fixed but not g-fixed
curve and “s” denotes the g-stable but not h-fixed curve.

(1) A1 ⊕A17:
I = 2: f , f − s− f − s− f − s− f − s− f − s− f − s− f − s− f − s− f
I = 4: h, h− s− f − s− h− s− f − s− h− s− f − s− h− s− f − s− h
H11

H13 −E′
13 −F1 −E12 −G2 −E32 −F3 −E′

33 −H33 −G3 −E′
23 −F2 −E′

21 −
G1 − E31 −H31.

(2) A3 ⊕A15:
I = 2: f − s− f , f − s− f − s− f − s− f − s− f − s− f − s− f − s− f
F2 − E22 −G2

H11 − E′
11 − F1 − E′

13 −H13 − E13 − G3 − E33 −H33 − E′
33 − F3 − E′

31 −
H31 − E31 −G1.

(3) A5 ⊕A13:
I = 2: f − s− f − s− f , f − s− f − s− f − s− f − s− f − s− f − s− f
I = 4: h− s− f − s− h, h− s− f − s− h− s− f − s− h− s− f − s− h
H13 − E13 −G3 − E33 −H33

H11 − E′
11 − F1 − E12 −G2 − E32 − F3 − E′

31 −H31 − E31 −G1 − E′
2 − F2

(4) A7 ⊕A11:
I = 2: f − s− f − s− f − s− f , f − s− f − s− f − s− f − s− f − s− f
H13 − E13 −G3 − E33 −H33 − E′

33 − F3

H11 − E′
11 − F1 − E12 −G2 − E22 − F2 − E′

21 −G1 − E31 −H31

(5) A9 ⊕A9:
I = 2: f − s− f − s− f − s− f − s− f , f − s− f − s− f − s− f − s− f
I = 4: h− s− f − s− h− s− f − s− h, h− s− f − s− h− s− f − s− h)
H11 − E′

11 − F1 − E12 −G2 − E32 − F3 − E′
33 −H33

H13 − E13 −G3 − E′
23 − F2 − E′

21 −G1 − E31 −H31
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