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EQUIDISTRIBUTION OF PERIODIC POINTS OF

SOME AUTOMORPHISMS ON K3 SURFACES

Chong Gyu Lee

Abstract. We say (W, {ϕ1, . . . , ϕt}) is a polarizable dynamical system

of several morphisms if ϕi are endomorphisms on a projective variety
W such that

⊗
ϕ∗
iL is linearly equivalent to L

⊗
q for some ample line

bundle L on W and for some q > t. If q is a rational number, then
we have the equidistribution of small points of given dynamical system

because of Yuan’s work [13]. As its application, we can build a polarizable
dynamical system of an automorphism and its inverse on a K3 surface
and can show that its periodic points are equidistributed.

1. Introduction

The study of algebraic dynamics blooms after Northcott proved the arith-
metic property of a dynamical system of a morphism on a projective space.
Szpiro, Ullmo and Zhang [12] started one direction of algebraic dynamics, the
equidistribution of small points. After various research of Bilu [3] on some
variety with group structure and of Baker and Rumely [2], Chambert-loir [4],
and Favre and Rivera-Letelier [7] on the dynamical equidistribution on P1,
Yuan [13] proved the general equidistribution theorem: let ϕ be a polarizable
endomorphism. Then, we have an ample line bundle L with a semipositive
dynamical metric || · ||ϕ defined by Zhang [14], then we have the equidistri-
bution of small points with respect to the height function corresponding to
L = (L, || · ||ϕ).

For the dynamical equidistribution, the “polarizability” condition is very
important because it guarantees that we can define a sequence of metrics de-

fined on the same line bundle. If ϕ is not polarizable, then, metrics ϕk∗|| · ||
1

qk

may be defined on different line bundles for each k so that “convergence” of
given sequence of metrics doesn’t make sense.

Still, we have hope because of Kawaguchi’s idea. He [8] suggested the po-
larizable dynamical system of several morphisms:
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Definition 1.1. Let W be a projective variety, let L be an ample line bundle
on W and let M = {ϕ1, . . . , ϕt : W → W} be a finite set of endomorphisms on
W . We say that a dynamical system of several morphisms (W,M) is polarizable
if

t⊗
i=1

ϕ∗
iL ∼ L⊗q

for some rational number q > t.

His idea makes a way to study the dynamics of some automorphisms. In
general, an automorphisms on a projective variety is not polarizable in general.
For example, if the rank of Néron-Severi Group of W is one, there is no polar-
izable automorphism. However, we have a good counter part, the inverse map.
The existence of the inverse map makes a dynamical system of an automor-
phism better; a dynamical system of several morphisms (W,M = {ϕ1, . . . , ϕt})
actually works with the monoid generated by M . If M consists of an automor-
phism σ and its inverse, the monoid M generated by M is exactly {σk | k ∈ Z}
and hence M-preperiodic point is essentially ‘σ-preperiodic or σ−1-prepriodic
points’. And, all preperiodic points of automorphism σk is actually periodic,
and σk and σ−k share that same set of periodic points for all k. Thus, to
study the properties of periodic points of σ, we can use a dynamical system
(W, {σ, σ−1}) instead of (W,σ). In Section 2, we have examples of polarizable
dynamical systems of an automorphism and its inverse on K3 surfaces.

The main purpose of this paper is to show that we have the dynamical
equidistribution for dynamical systems of several morphisms and to apply this
result on some automorphisms on K3 surface. In Section 3, we will combine
Kawaguchi’s and Yuan’s results to prove the equidistribution of small points:

Theorem 1.2. Let W be a projective variety of dimension n over a number
field K and let M = {ϕ1, . . . , ϕt} be a finite set of endomorphisms on W .
Suppose that (W,M) is a polarizable with respect to L and {xm} be a generic
and small sequence. Then, the a sequence of probability measure on the Galois
orbit of xm weakly converges to the dynamical measure at every place v :

1

deg xm

∑
y∈Γxm

δy → µM,v,

where Γxm is the Galois orbit or xm and µM,v =
c1(L)nv
degL W is the dynamical

probability measure of the dynamical system (W,M) on the analytic space W an
Kv

.

In Section 5, we will show that we can find a generic and small sequence of
periodic points. Thus, we can find some properties of the set of periodic points
of some automorphisms on K3 surfaces.

Theorem 1.3. Let W be a projective variety defined over a number field K
and let M = {σ, σ−1} be a set of an automorphism and its inverse on W .
Suppose that (W,M) is polarizable. Then, Per(σ) is Zariski dense.
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2. Polarizable dynamical systems of automorphisms on K3 surfaces

We have lots of interesting examples of polarizable dynamical systems of
several morphisms on K3 surfaces. We refer [5, 6, 10, 11] for general reference
for intersection Theory and height functions.

2.1. K3 surface with two involutions, I

The space ofK3 surfaces is a 19-dimensional object up to isomorphism. And,
a family F of K3 surfaces in P2×P2 defined by an intersection of hypersurfaces
of bidegree (1, 1) and (2, 2) is a 18-parameter family of isomorphism classes of
nonsingular surfaces. For details of suchK3 surfaces, we refer [9, §7.4]. When S
is defined in P2 ×P2, the we have restrictions of projections πi : P

1
1 ×P 1

2 → P1
i

on S. Then, because of the definition of S, πi|S are generically two-to-one
maps. So, we can define rational maps ιi : S 99K S such that

ιi(P ) := Q if π−1
i (πi(P )) = {P,Q}.

Then, we can check that ι1 and ι2 are automorphisms of order 2 for all sur-
faces in F except a Zariski closed subset of F . Since ιi are morphisms of
finite order, their dynamical property is not so interesting. However, ι1 and
ι2 are not commutative so that they will generate a ‘dynamically interesting’
automorphism.

Example 2.1. Let S ⊂ P2 × P2 be a K3 surface defined by an intersection
of hypersurfaces of bidegree (1, 1) and (2, 2) with two involutions ι1, ι2, let πi

be the projection map onto i-th component and let Li = π∗
iOP2(1). Then, we

have

ι∗iLi = Li, ι∗iLj = L⊗4
i ⊗ L⊗−1

j

and hence

ι∗1L⊗ ι∗2L = L⊗4,

where L = L1 ⊗ L2 is an ample line bundle. Therefore, (S, {ι1, ι2}) is a polar-
izable dynamical system.

Example 2.2. Let S be the K3 surface defined on Example 2.1. Define σ1 =
ι2 ◦ ι1 and σ2 = ι1 ◦ ι2 = σ−1

1 . Then, (S, {σ1, σ2}) is a polarizable dynamical
system: we have

σ∗
i Li = L⊗−1

i ⊗ L⊗4
j , σ∗

i Lj = L⊗−4
i ⊗ L⊗15

j

and

σ∗
1L⊗ σ∗

2L = L⊗14.
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2.2. K3 surface with two involutions, II

There is another way of defining K3 surface in P2 × P2, intersecting two
hypersurfaces of bidegree (1, 2) and (2, 1). With the same method on [9, §7.4],
we can calculate the dimension of such family; the number of parameters of
defining equations∑

0≥i≥j≥2

∑
0≥k≥2

Aijkxixjyk and
∑

0≥l≥2

∑
0≥m≥n≥2

Bmnlxlymyn

is (18−1)+(18−1) and the dimension of PGL3, the isometry group of each P2,
is 8. Hence the dimension of the family of such K3 surface is 17+17−8−8 = 18
again. Since S is still defined in P2×P2, S has two involutions from projection
maps.

Example 2.3. Let S ⊂ P2×P2 be a K3 surface generated by intersecting two
hypersurfaces of bidegree (1, 2) and (2, 1) with two involutions ι1, ι2. Let πi be
the projection map onto i-th component and Li = π∗

i OP2(1). Then, we have

ι∗iLi = Li, ι∗iLj = L⊗−1
i ⊗ L⊗5

j .

Since L = L1 ⊗ L2 is ample, we get

ι∗1L⊗ ι∗2L = L⊗5

and hence get a polarizable dynamical system.

Example 2.4. Let S be the K3 surface defined on Example 2.3. Define σ1 =
ι2 ◦ ι1 and σ2 = ι1 ◦ ι2 = σ−1

1 . Then, (S, {σ1, σ2}) is a polarizable dynamical
system: we have

σ∗
i Li = L⊗−1

i ⊗ L⊗5
j , σ∗

i Lj = L⊗−5
i ⊗ L⊗24

j

and hence

σ∗
1L⊗ σ∗

2L = L⊗23

for all L ∈ ⟨L1, L2⟩.

2.3. K3 surface with three involutions

If we define a K3 surface S in P1 × P1 × P1, then the Picard number of S
is at least 3, greater than that of K3 surface in P2 × P2 by 1. Thus we expect
that the dimension of the family of K3 surface is reduced by 1; the number of
parameters for defining equations∑

0≥i≥j≥2

∑
0≥k≥l≥2

∑
0≥m≥n≥2

Aijklmnxixjykylzmzn

is 27−1 and the dimension of PGL2, the isometry group of each P1, is 3. Hence
the dimension of the family of K3 such surfaces is 26−3−3−3 = 17. Now, we
have projection maps πi :

∏3
j=1 P1

j →
∏

j ̸=i P1
j which are generically two-to-one

on S. So, we can define three involutions with the same method.
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Example 2.5. Let S ⊂ P1×P1×P1 be aK3 surface, a hypersurface of bidegree
(2, 2, 2) with three involutions ι1, ι2, ι3. Let πi be the projection map onto i-th
component and Li = π∗

i OP1(1). Then, we have

ι∗iLj = Lj for i ̸= j, ι∗iLi = L⊗−1
i ⊗ L⊗2

j ⊗ L⊗2
k .

Hence, let L = L1 ⊗ L2 ⊗ L3 and get

ι∗1L⊗ ι∗2L⊗ ι∗3L = L⊗5.

So, (S, {ι1, ι2, ι3}) is polarizable.

Example 2.6. Let S be the K3 surface defined on Example 2.5. Consider
τ1 = ι3 ◦ ι2 ◦ ι1, τ2 = τ−1

1 . Then,

τ∗1L1 = ι∗3ι2(L
⊗−1
1 ⊗ L⊗2

2 ⊗ L⊗2
3 )

= ι∗3(L
⊗3
1 ⊗ L⊗−2

2 ⊗ L⊗6
3 ) = L⊗15

1 ⊗ L⊗10
2 ⊗ L⊗−6

3 ,

τ∗1L2 = ι∗3ι
∗
2(L2) = ι∗3(L

⊗2
1 ⊗ L⊗−1

2 ⊗ L⊗2
3 ) = L⊗6

1 ⊗ L⊗3
2 ⊗ L⊗−2

3 ,

τ∗1L3 = ι∗3ι
∗
2(L3) = ι∗3L3 = L⊗2

1 ⊗ L⊗2
2 ⊗ L⊗−1

3 ,

τ∗2L1 = ι∗1ι
∗
2(L1) = ι∗1L1 = L⊗−1

1 ⊗ L⊗2
2 ⊗ L⊗2

3 ,

τ∗2L2 = ι∗1ι
∗
2(L2) = ι∗1(L

⊗2
1 ⊗ L⊗−1

2 ⊗ L⊗2
3 ) = L⊗−2

1 ⊗ L⊗3
2 ⊗ L⊗6

3 ,

τ∗2L3 = ι∗1ι2(L
⊗2
1 ⊗ L⊗2

2 ⊗ L⊗−1
3 )

= ι∗1(L
⊗3
1 ⊗ L⊗−2

2 ⊗ L⊗6
3 ) = L⊗−6

1 ⊗ L⊗10
2 ⊗ L⊗15

3 ,

[τ∗1 ⊗ τ∗2 ](L
⊗a
1 ⊗ L⊗b

2 ⊗ L⊗c
3 ) = (L⊗15a+6b+2c

1 ⊗ L⊗10a+3b+2c
2 ⊗ L⊗−6a−2b−c

3 )

⊗ (L⊗−a−2b−6c
1 ⊗ L⊗2a+3b+10c

2 ⊗ L⊗2a+6b+15c
3 )

= L⊗14a+4b−4c
1 ⊗ L⊗12a+6b+12c

2 ⊗ L⊗−4a+4b+14c
3 .

Let L = L1 ⊗ L⊗2
2 ⊗ L3. Then,

τ∗1L⊗ τ∗2L ∼ L⊗18

and hence (S, {τ1, τ2}) is polarizable. More precisely, let Lα,β = (L1⊗L2)
⊗α⊗

(L−1
1 ⊗ L3)

⊗β , then

τ∗1Lα,β ⊗ τ∗2Lα,β ∼ L⊗18
α,β .

Similarly, automorphisms τ ′ = ι1 ◦ ι3 ◦ ι2, τ ′′ = ι2 ◦ ι1 ◦ ι3 with their inverses
will generate polarizable dynamical systems respectively.

Example 2.7. Consider the following case; let S be a K3 surface defined on
Example 2.5. Define σ1 = ι2 ◦ ι1 and σ2 = ι1 ◦ ι2 = σ−1

1 . Then, (S, {σ1, σ2}) is
not a polarizable dynamical system:

σ∗
1L1 = ι∗2(L

⊗−1
1 ⊗ L⊗2

2 ⊗ L⊗2
3 ) = L⊗3

1 ⊗ L⊗−2
2 ⊗ L⊗6

3 ,
σ∗
1L2 = ι∗2(L2) = L⊗2

1 ⊗ L⊗−1
2 ⊗ L⊗2

3 ,
σ∗
1L3 = ι∗2(L3) = L3.
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Therefore,

[σ∗
1 ⊗ σ∗

2 ](L
⊗a
1 ⊗ L⊗b

2 ⊗ L⊗c
3 ) = (L⊗3a+2b

1 ⊗ L⊗−2a−b
2 ⊗ L⊗6a+2b+c

3 )

⊗ (L⊗−a−2b
1 ⊗ L⊗2a+3b

2 ⊗ L⊗2a+6b+c
3 )

= L⊗2a
1 ⊗ L⊗2b

2 ⊗ L⊗8a+8b+2c
3 .

Therefore, L3 is the only combination of L1, L2 and L3 which makes linear
equivalence;

σ∗
1L3 ⊗ σ∗

2L3 ∼ L⊗2
3

and hence (S, {σ1, σ2}) is not a polarizable dynamical system in Kawaguchi’s
sense. Similarly, (S, {ι1 ◦ ι3, ι3 ◦ ι1}), (S, {ι2 ◦ ι3, ι3 ◦ ι2}) are not polarizable.

2.4. K3 surface in P1 × P1 × P1 with four involutions

We have some special case. If S has a fiber structure such that all fiber
is isomorphic to an elliptic curve, then we can define another involution from
group structure: ι4(P ) = [−1]EP where E is an elliptic fiber containing P and
[−1]E is the additive inverse map on E. For details, refer [1].

Example 2.8. Let S = P1×P1×P1 be aK3 surface, a hypersurface of bidegree
(2, 2, 2) of the Picard number 4 with four involutions; Pic(S) = ⟨L1, L2, L3, L4⟩
where L4 corresponds to −2-curve class containing (x, 0, 0). Define an auto-
morphisms τ = ι1 ◦ ι2 ◦ ι4 and τ−1 = ι4 ◦ ι2 ◦ ι1. Then,

ι∗4L1 = L1, ι
∗
4L4 = L4, ι∗4Lj = L⊗8

1 ⊗ L−1
i ⊗ L4.

Therefore,

τ∗L⊗ τ−1∗L = L⊗30

if

L = (L⊗4
1 ⊗ L⊗4

2 ⊗ L⊗3
3 )⊗α ⊗ (L⊗8

1 ⊗ L⊗2
2 ⊗ L⊗3

4 )⊗β

for some α, β. Similarly, τ ′ = ι1 ◦ ι3 ◦ ι4 with its inverse will generate a polar-
izable dynamical system. But, ζ = ι2 ◦ ι3 ◦ ι4 or ζ ′ = ι3 ◦ ι2 ◦ ι4 are polarized
by q = 2 or q = −2. Also, η = ι1 ◦ ι4 ◦ ι2, η′ = ι1 ◦ ι4 ◦ ι2 are not polarized by
any ample line bundles.

3. Dynamical equidistribution on polarizable dynamical systems of
several morphisms

The equidistribution of small points for polarizable dynamical systems of
several morphisms is almost proved. Kawaguchi proved that the dynamical
system of several morphisms generates the dynamical adelic metric which is
semipositive. Thus, the equidistribution of small points of a polarizable dy-
namical system is an easy consequence of Yuan’s results. In this section, we
will briefly check Kawaguchi’s and Yuan’s results to confirm the equidistribu-
tion theory for dynamical system of several morphisms.
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Definition 3.1. Let W be a projective variety defined over a number field K,
let L = (L, || · ||) be a metrized line bundle on W such that L is an ample line
bundle L with a semipositive adelic metric || · ||. Then we define a height of
subvarieties corresponding to L to be

hL(Y ) :=
c1(L)

d+1

(d+ 1) ordL Y
,

where Y is a subvariety of W of dimension d and c1 is the curvature form.

Definition 3.2. Let W be a projective variety, let L be a metrized line bundle
and let hL be the height function for closed subvarieties of W corresponding

to L and let {xm} is a sequence of points on W . We say {xm} is generic if
any infinite subsequence of {xm} is not contained in a closed subvariety. We
say{xm} is small if hL(xm) converges to hL(W ).

Theorem 3.3 ([13, Theorem 3.2]). Let W be a projective variety of dimension
n over a number field K, and let L be a metrized line bundle over W with
semipositive adelic metric. Suppose that {xm} is an infinite sequence of closed
points on W which is generic and small with respect to hL. Then, for any place
v of K, the Galois orbit of sequence {xm} are equidistributed in the analytic
space W an

Kv
with respect to the canonical measure dµv = c1(L)

n
v/degL W :

1

deg xm

∑
y∈Γxm

δy weakly converges to dµv.

Remark 3.4. In Theorem 3.3, we should assume that L is Q-divisor. Actually
we will use the integral model (W,L) of (W,L⊗e) where L on the generic fiber
WQ is an integral line bundle L⊗e. Thus, L ∈ Pic(W )⊗Q. Using L instead of
L implies this fact.

Theorem 3.5 ([8, Theorems A and B]). Let W be a projective variety de-
fined over a number field K, let L be an ample line bundle on W and let
M = {ϕ1, . . . , ϕt} be a set of endomorphisms on W . Suppose that (W,M) is
polarizable with respect to L :

t⊗
i=1

ϕ∗
iL = L⊗q,

where q > t. Then,

(1) There is a unique continuous metric || · ||M , called an admissible metric
on L with || · ||qM = τ∗(ϕ∗

1|| · ||
q
M · · ·ϕ∗

t || · ||
q
M ) where τ : L⊗q →

⊗
ϕ∗
iL

is an isomorphism.
(2) Let L = (L, || · ||M ) be the line bundle with an admissible metric. Then,

there exists a unique real-valued function

ĥL : W (K) → R
with the following properties:
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(a) ĥL is a Weil height function corresponding to L.

(b)
k∑

i=1

ĥL

(
ϕi(x)

)
= q · ĥL(x) for all x ∈ W (K).

(3) ĥL ≥ 0 for all x ∈ W (K).

Remark 3.6. The condition q > t is necessary because the number of N -
combinations of ϕi’s in M is tN while the growth rate of height is qN . More
precisely, the canonical height function, if exists, is of the form

hL(P ) = lim
N→∞

1

qN

∑
F∈MN

hL

(
F (P )

)
.

Therefore, if q ≤ t, then it may not shrink at prepriodic points. For example,
if q = t and P is a common fixed point of M such that hL(P ) ̸= 0, then

hL(P ) = lim
N→∞

1

qN

∑
F∈MN

hL

(
F (P )

)
= hL(P )

so that P may not be a root of the canonical height function. Thus, even we can
build a semipositive metric, it is not compatible with the original dynamical
system.

Now, combining previous two lemmas, we get equidistribution of small points
for the polarizable dynamical system of several morphisms:

Theorem 1.2. Let W be a projective variety of dimension n defined over a
number field K and let M = {ϕ1, . . . , ϕt} be a finite set of endomorphisms
on W . Suppose that (W,M) is a polarizable with respect to L and {xm} be a
generic and small sequence. Then, the a sequence of probability measure on the
Galois orbit of xm weakly converges to the dynamical measure at every place
v :

1

deg xm

∑
y∈Γxm

δy → µM,v,

where Γxm is the Galois orbit of xm and µM,v =
c1(L)nv
degL W is the probability

M -invariant measure on the analytic space W an
Kv

.

Proof. Theorem 3.5 says that we have the dynamical adelic metric on L. Such
metric is semipositive because it is defined by the limit of positive metrics.
Hence, we can apply Theorem 3.3, to get the desired result. □

4. Periodic points of automorphisms

In previous section, we have the equidistribution of small points for polar-
izable dynamical systems of several morphisms. To show that periodic points
are equidistributed, we need to show that there is a generic sequence of pe-
riodic points and hL(W ) = 0. In this section, we will prove that the set of
periodic points is Zariski dense in W which will complete the equidistribution
of periodic points.
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Lemma 4.1. Let σ : W → W be an automorphism on a projective variety W
such that (W, {σ, σ−1}) is polarizable. Then, (W, {σm, σ−m}) is also polarizable
for all m ∈ Z.

Proof. Let

σ∗L⊗ σ−1∗L = L⊗q where q > 2.

Then,

σ2∗L⊗ σ−2∗L = L⊗q2−2.

Suppose

Lm = σl∗m⊗ σ−l∗L = L⊗qm where qm > 2

and qm − qm−1 > 2 holds for m = m0 − 1,m0. Then,

σ∗Lm0 ⊗ σ−1∗Lm0 = L⊗q·qm0 .

On the other hand,

σ∗Lm0 ⊗ σ−1∗Lm0 = σm0+1∗L⊗ σm0−1∗L⊗ σ−m0+1∗L⊗ σ−m0−1∗L

and hence
σm0+1∗L⊗ σ−m0−1∗L = L⊗q·qm0−qm0−1 .

Therefore,

σm0+1∗L⊗ σ−m0−1∗L = L⊗qm0 ,

where qm0 = q · qm0+1 − qm0 ≥ 2qm0 − qm0−1 > 2. Moreover, qm0+1 − qm0 =
(q − 1)qm0 − qm0−1 > qm0 − qm0−1 > 2. Therefore, (W, {σm, σ−m}) is also
polarizable for all m ∈ Z by induction. □

Theorem 1.3. Let W be a projective variety defined over a number field K
and let M = {ϕ, ϕ−1} be an automorphism and its inverse on W . Suppose that
(W,M) is polarizable with some integer q > 2. Then, Per(ϕ) is Zariski dense.

Proof. Suppose that the Zariski closure of S is C which has finitely many
irreducible components C1, . . . , Cr of codimension li. Choose a Ci0 which has
the lease codimension li0 . Then, σ(Ci0) is still an irreducible component of C.
Since there are only finitely many irreducible components, there is a component
C of codimension l fixed by σm for some m > 0. Furthermore, since σ is
an automorphism, σ∗ is an automorphism on function fields K(C1). Thus,
σm
∗ C = C. Similarly, σ−m

∗ C = C. Let (L)l = L · · ·L be l-time self intersection
of L. Then, by projection formula for intersection, we have

(L)l · C = (L)l · σm
∗ C = (σm∗L)l · C and (L)l · C = (L)l · σm

∗ C = σm∗L · C.
Combining them to get

(L⊗2)l · C = σm∗L · C + σm∗L · C1 = (σm∗L⊗ σm∗L) · C.
On the other hand, by Lemma 4.1, (W, {σm, σ−m}) is also polarizable. Thus,

(L⊗2)l · C = (L⊗qm)l · C where qm > 2

and hence (L)l ·C = 0, which contradicts to the assumption that L is ample. □
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Corollary 4.2. Let σ : W → W be an automorphism on a projective variety
W such that (W, {σ, σ−1}) is polarizable with respect to an ample line bundle
L. Then, a generic sequence {xm} ⊂ Per(σ) is small.

Proof. Let L be metrizable line bundle with metric induced by (W, {σ, σ−1}).
We know that hL(xm) = 0 if xm ∈ Per(σ). Thus, we only have to show that
hL(W ) = 0.

[14, Theorem 1.10] says that

e1(L) ≥ hL(W ) ≥ 1

n

n∑
i=1

ei(L),

where
ei(L) = sup

Y⊊W
CodimY=i

inf
x∈W\Y

ĥL(x).

By Theorem 1.3, Per(σ) is Zariski dense in W and hence ei(L) = 0 for all

i = 1, . . . , n and hence ĥL(W ) = 0. □

Now, Theorem 1.3 say that we can build a generic and small sequence of
periodic points. Therefore, we can prove the equidistribution of periodic point:

Corollary 4.3. Let W be a projective variety defined over a number field K
and let M = {σ, σ−1} be an automorphism and its inverse on W . Suppose that
(W,M) is polarizable with some integer q > 2. Then, Per(σ) is equidistributed.

Proof. It is an easy consequence of Theorem 1.2. and Theorem 1.3: by Theo-
rem 1.3, we can build a generic and small sequence {xm} in Preper(σ). And,
the sequence of probability measure on Galois orbit of xm weakly converges to
the dynamical measure by Theorem 1.2. □
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