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AUTOMORPHISMS OF K3 SURFACES WITH

PICARD NUMBER TWO

Kwangwoo Lee

Abstract. It is known that the automorphism group of a K3 surface

with Picard number two is either an infinite cyclic group or an infinite
dihedral group when it is infinite. In this paper, we study the generators

of such automorphism groups. We use the eigenvector corresponding to
the spectral radius of an automorphism of infinite order to determine the

generators.

1. Introduction

The aim of this paper is to give some conditions on the generators of the
automorphism group of a K3 surface of Picard number 2 (Theorem 1.1 and
Theorem 1.2). For a K3 surface X with rank two Picard lattice, Galluzzi,
Lombardo and Peters [4] applied the classical theory of binary quadratic forms
to prove that the automorphism group Aut(X) is trivial or Z2 if it is finite.
Moreover, if it is infinite, the automorphism group is an infinite cyclic group or
an infinite dihedral group. In this paper, we find conditions for the generators of
the automorphism group by using the eigenvector corresponding to the spectral
radius of an automorphism of infinite order.

Let g be an automorphism of a compact complex surface X. It is known
that the topological entropy h(g) is determined by the spectral radius ρ of g∗

acting on H∗(X), that is, h(g) = log ρ(g∗|H2(X)). If h(g) > 0, then a minimal
model for X is either a K3 surface, an Enriques surface, a complex torus or a
rational surface [3]. In the sense of dynamics of automorphisms, it is a natural
question to find a minimal possible entropy. For example, for a K3 surface,
one constructs an automorphism synthetically by the lattice theory and Torelli
theorem to find the minimal entropy ([9]). However, in this paper, we go the
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other way around. That is, using topological entropies, we determine automor-
phisms of X. More precisely, by finding eigenvectors of an automorphism, we
can find the generators of the automorphism group of a K3 surface.

The main observation of this idea is the fact that the solutions of Pell equa-
tion associated with a non-square number form an infinite group generated by
Pell multiples of finite solutions (cf. Section 2.1). For some k ∈ Z \ {0,−1}, if
we consider a non-empty set Ak (cf. (10) in Section 3) of divisors each of which
has the self-intersection number 2k, then by g ∈ Aut(X), g∗(D) ∈ Ak for any
D ∈ Ak, where g∗ := g∗|SX and SX is the Picard lattice of X. In particular,
for (u, v) ∈ Ak, if we consider a sequence of (un, vn) := gn∗(u, v) and if the
ratio un/vn converges to U/V as n increases, then (U, V ) will be the eigen-
vector corresponding to the spectral radius of g∗|SX . We use this eigenvector
to find g. Furthermore, using this eigenvector and g, we can also determine
anti-symplectic involutions when Aut(X) ∼= Z2 ∗ Z2. An automorphism g of
X is said to be symplectic if g∗ωX = ωX and anti-symplectic if g∗ωX = −ωX ,
where ωX is a nowhere vanishing holomorphic 2-form of X.

Let X be a K3 surface with Picard lattice SX whose self-intersection matrix
is

(1) QSX
=

(
2a b
b 2c

)
for some basis with d := −disc(SX) = b2−4ac > 0. Let g be an automorphism
of X with g∗|SX given by the matrix

(2)

(
α β
γ δ

)
.

Theorem 1.1. For a K3 surface X with intersection matrix of Picard lattice
SX as above, an automorphism g of infinite order acting on SX as in (2)
satisfies

(3) γ = −a

c
β, δ = α− b

c
β and α2 − b

c
αβ +

a

c
β2 = 1.

Moreover, g∗|SX is a power of an isometry h of SX defined by the matrix

(4) h =

(
α1 β1

−a
cβ1 α1 − b

cβ1

)
,

where (2α1−bβ1

c , β1

c ) is the minimal positive solution of Pell equation x2−dy2 =
4.

Theorem 1.2. Let X be a K3 surface with Picard lattice SX whose intersection
matrix is (1). If Aut(X) ∼= Z2 ∗ Z2, then an involution ι acting on SX by the
matrix in (2) satisfies

(5) δ = −α, γ = −b

c
α+

a

c
β and α2 − b

c
αβ +

a

c
β2 = 1.
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Remark 1.3. By Lemma 2.6 in Section 2.2, we can easily see whether an isom-
etry acts on SX as −id or not. If it acts on SX as −id, then it extends to an
isometry of H2(X,Z). Moreover, if it preserves the ample cone, then by Torelli
theorem, it extends to an anti-symplectic involution.

The structure of this paper is the following: In Section 2 we recall some
results about Pell equations and lattices. In Section 3 we prove Theorem 1.1
and Theorem 1.2. In Section 4 we apply our results to several examples to find
the generators of the automorphism group of a K3 surface of Picard number 2.

2. Preliminaries

2.1. Pell equations

For a positive integer d, an equation of the form

(6) u2 − dv2 = 1

is called a Pell equation. We are interested in solutions (u, v), where u and v
are integers. Solutions with u > 0 and v > 0 will be called positive solutions.
It is known in [8] that for every non-square positive integer d, the equation (6)
has a nontrivial solution with v ̸= 0. Moreover, the solutions of Pell equation
can be generated from the smallest positive solution (u1, v1) of (6).

Theorem 2.1 ([1], Sec. 6.6. Theorem 7). If d is a square, the only solutions
of (6) are u = ±1 and v = 0.

If d is not a square, let (u1, v1) be the smallest positive solution of (6) and

write α = u1 + v1
√
d, then all solutions of (6) are

{(±un, vn) | un, vn ∈ Z such that un + vn
√
d = (α)n, n ∈ Z}.

Remark 2.2. All solutions of (6) are units of Z[
√
d].

More generally, for m ∈ Z \ {0}, the equation

(7) u2 − dv2 = m

is called a generalized Pell equation. Note that if (a, b) is a solution of (7),

then for any solution (un, vn) of (6), (u′
n, v

′
n) defined by u′

n + v′n
√
d = (un +

vn
√
d)(a + b

√
d) is also a solution of (7). (u′

n, v
′
n) is called a Pell multiple of

a+ b
√
d.

In particular, for m = 4, we have the following result.

Theorem 2.3 ([2], Theorem 4.4.1). Let d be a non-square positive integer. If
(u1, v1) is the smallest positive solution of u2 − dv2 = 4, then all solutions are

generated by powers of α = u1+v1
√
d

2 in the sense that writing αn = un+vn
√
d

2 ,
(±un, vn) is a new solution and all solutions can be obtained in that way.
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2.2. Lattices

A lattice is a pair (L, b) of a free finite rank Z-module L together with a
bilinear form b : L×L → Z. A lattice is even if b(x, x) ∈ 2Z for any x ∈ L, odd
otherwise. The discriminant disc(L) is the determinant of the matrix of the
bilinear form. A lattice is called non-degenerate if the discriminant is non-zero
and unimodular if the discriminant is ±1. If the lattice L is non-degenerate,
the pair (s+, s−), where s± denotes the multiplicity of the eigenvalue ±1 for
the quadratic form associated to L⊗R, is called a signature of L. An isometry
of a lattice is an isomorphism preserving the bilinear form. The orthogonal
group O(L) consists of all isometries of L.

For a lattice (L, b), the dual lattice L∗ is defined by

L∗ = HomZ(L,Z) = {x ∈ L⊗Q | b(x, y) ∈ Z for any y ∈ L}.
We have a natural inclusion L ↪→ L∗ and the discriminant group of L is A(L) =
L∗/L. The bilinear form on L induces a symmetric bilinear form b∗ : L∗×L∗ →
Q. Moreover, b∗ induces a symmetric bilinear form bL : A(L) × A(L) → Q/Z
and thus a quadratic form qL : A(L) → Q/Z.

Whenever L is even, qL takes values in Q/2Z. By O(A(L)) we denote the
group of automorphisms of A(L) preserving qL. The inclusion of L into L∗

yields a homomorphism Φ : O(L) → O(A(L)). For a non-degenerate lattice L
of signature (1, k) with k > 0, we have the decomposition

(8) {x ∈ L⊗ R | x2 > 0} = CL ∪ (−CL)

into two disjoint cones. We define

(9) O+(L) := {g ∈ O(L) | g(CL) = CL}.
Note that O+(L) is a subgroup of O(L) of index 2.

We state some results about lattices which will be used in later sections.

Theorem 2.4 ([12], Theorem 1.14.4). For any even lattice L of signature (1, ρ)
with ρ ≤ 9, there exists a projective K3 surface X such that SX

∼= L.

An embedding S ↪→ L of lattices is called primitive if L/S is free.

Proposition 2.5 ([11], Proposition 1.6.1). A primitive embedding of an even
lattice S into an even unimodular lattice L, in which the orthogonal complement
of S is isomorphic to K, is determined by an isomorphism γ : A(S)

∼−→ A(K)
for which qK ◦ γ = −qS.

Lemma 2.6 ([6], Lemma 1). Let L be a non-degenerate even lattice of rank n.
For g ∈ O(L) and ϵ ∈ {±1}, g acts on A(L) as ϵ·id if and only if (g−ϵ·In)·Q−1

L

is an integer matrix, where QL is the intersection matrix of L.

In [4], Galluzzi, Lombardo, and Peters classified the automorphism groups
of K3 surfaces of Picard number 2.

Definition ([4], Section 3.2). A lattice L is ambiguous if L admits an isometry
P with detP = −1.
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Theorem 2.7 ([4], Corollary 1). For X a K3 surface with Picard number 2 the
group Aut(X) is finite precisely when the Picard lattice SX contains divisors
L with L2 = 0 or with L2 = −2. If SX does not contain such divisors and
if moreover SX is not ambiguous, then Aut(X) is infinite cyclic, but if SX is
ambiguous, then Aut(X) is either infinite cyclic or the infinite dihedral group.

It is known that a symplectic involution on a projective K3 surface occurs
only if Picard number is greater than 8.

Proposition 2.8 ([5], Section 2.1). A projective K3 surface with a symplectic
involution has Picard number at least 9.

3. Proof

Let L be an even lattice of signature (1, 1) with intersection matrix given
by (1) with d := −disc(L) = b2 − 4ac > 0. By Theorem 2.4, there is a K3
surface X whose Picard lattice SX

∼= L. It is known that d is a square number
if and only if there is a D ∈ SX with D2 = 0. Suppose that d is not a square
number. Moreover, we assume that SX has no divisor D with self-intersection
−2. Hence we have that Aut(X) is infinite (cf. Theorem 2.7).

We consider

(10) Ak = {D = (x, y) ∈ SX | D2 = 2ax2 + 2bxy + 2cy2 = 2k}
for some k ∈ Z such that Ak ̸= ∅. Then Ak consists of (Ak)± = {(x, y) | x =
−by±z

2a such that z2 − dy2 = 4ak}. For (x0, y0) ∈ (Ak)± with x0 = −by0±z0
2a

and z20 − dy20 = 4ak, we have that (xn, yn) ∈ (Ak)±, where xn = −byn±zn
2a with

z2n − dy2n = 4ak and (zn, yn) is a Pell multiple of (z0, y0).

Lemma 3.1. For every (xn, yn) ∈ (Ak)± (resp.), xn

yn
converges to −b±

√
d

2a

(resp.) as n increases.

Proof. For (xn, yn) with xn = −byn+zn
2a , (zn, yn) is obtained by zn + yn

√
d =

(un+vn
√
d)(z0+y0

√
d) with u2

n−dv2n = 1. Hence zn
yn

= unz0+dvny0

vnz0+uny0
=

z0
un
vn

+dy0

z0+
un
vn

y0

converges to
√
d since un

vn
converges to

√
d as n increases. Now for (xn, yn) ∈

(Ak)+,
xn

yn
= −b+zn/yn

2a converges to −b+
√
d

2a as n increases.

Similarly this also holds for (xn, yn) ∈ (Ak)−. □

3.1. Proof of Theorem 1.1

Let g be an automorphism of infinite order of X whose action on SX is given
by (2). Then Ak ̸= ∅ for some k ̸= 0,−2 (cf. Theorem 2.7). For (x0, y0) ∈ Ak,
let (xn, yn) = gn∗(x0, y0). Then we have that (xn, yn) ∈ Ak. By Lemma 3.1,
xn

yn
converges to x

y = −b+
√
d

2a as n increases, hence the ratio x
y indicates the

direction of an eigenvector of g∗. Hence g∗ preserves the ratio, i.e., for

(11)

(
α β
γ δ

)(
x
y

)
=

(
αx+ βy
γx+ δy

)
,
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we have that

(12)
αx+ βy

γx+ δy
=

x

y
=

−b+
√
d

2a
or

α−b+
√
d

2a + β

γ−b+
√
d

2a + δ
=

−b+
√
d

2a
.

Then we have that

(13) α(−b+
√
d) + 2aβ =

γ(2b2 − 4ac− 2b
√
d)

2a
+ δ(−b+

√
d).

Now since this is an element of Q[
√
d], we have that

(14) α+
b

a
γ − δ = 0 and aβ + cγ = 0.

This gives the first two conditions in (3). Since we assume that d is not a
square number, c ̸= 0. Moreover, since g∗ is an isometry of SX , we have that
g∗trQSX

g∗ = QSX
, where QSX

is the intersection matrix of SX as in (1). This
and conditions in (14) give the last identity in (3). This proves the first part
of the theorem.

Next, we will see that the generator of infinite order is a power of such a
minimal isometry in the sense that the minimal isometry is associated with the
minimal positive solution of some Pell equation. Suppose that

(15) h′ =

(
α′ β′

−a
cβ

′ α′ − b
cβ

′

)
,

where α′ =
b β′

c +z

2 with (z, β′

c ) being another solution of

(16) u2 − dv2 = 4.

We need to show that h′ is a power of h in (4). For this, let (z1,
β1

c ) be the

minimal positive solution of (16). Then by Theorem 2.3, any solution (zk,
βk

c )

is given by a power of
z1+

β1
c

√
d

2 , that is,
zk+

βk
c

√
d

2 = (
z1+

β1
c

√
d

2 )k with k ∈ Z.
Hence z = zl and β′ = βl for some l ∈ Z. The following claim shows that
h′ = hl.

Claim. For all k ∈ Z, let αk =
b
βk
c +zk
2 . Then

hk =

(
αk βk

−a
cβk αk − b

cβk

)
.

Proof. For the induction argument, suppose that

hk−1 =

(
αk−1 βk−1

−a
cβk−1 αk−1 − b

cβk−1

)
.

Then hk is given by the following matrix(
α1αk−1 − a

cβ1βk−1 α1βk−1 + αk−1β1 − b
cβ1βk−1

−a
cβk−1(α1 − b

cβ1)− a
cαk−1β1 αk−1(α1 − b

cβ1)− βk−1(
b
cα1 − b2−ac

c2 β1)

)
.
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From
zk+

βk
c

√
d

2 = (
z1+

β1
c

√
d

2 )k, we have that zk =
z1zk−1+d

β1βk−1

c2

2 and βk =
z1βk−1+zk−1β1

2 . Hence βk = α1βk−1 + αk−1β1 − b
cβ1βk−1 and αk = α1αk−1 −

a
cβ1βk−1. □

In particular, h′ = hl and this completes the proof of Theorem 1.1.

Remark 3.2. Note that for αk =
b
cβk−zk

2 , the corresponding isometry reflects
the positive cone and the negative cone.

3.2. Proof of Theorem 1.2

In this section, we find some conditions on the involution if we have Aut(X)
∼= Z2 ∗ Z2.

Proof of Theorem 1.2. Suppose that σ and τ are the generators of Z2 ∗Z2. By
Proposition 2.8, these are anti-symplectic involutions. Hence if we let g = σ◦τ ,
then g is symplectic of infinite order. Let ι be an involution of X. Then
ι = gn ◦ σ or τ ◦ gn for some n. Let {v, w} be the eigenvectors of gn∗|SX ⊗ R
corresponding to eigenvalues ρ and 1/ρ such that gn∗v = ρv and gn∗w = 1

ρw,

where ρ is the spectral radius of gn∗|SX .
We see that v and w lie on each of the two extremal rays of the ample cone

of X since gn∗ preserves the ample cone. Otherwise, gk∗ = id on SX for some
k. Since g is symplectic, gk∗ = id on H2(X,Z). Then by Torelli theorem, gk

is an identity which is a contradiction. Moreover, the two involutions σ and τ
interchange these two eigenvectors v and w. Indeed, the matrices corresponding
to the actions of σ and τ on SX have the same determinant −1. Otherwise,
they trivially act on SX which implies that g = σ ◦ τ also acts trivially on SX .
Then g is an identity by Torelli theorem which is also a contradiction. Hence
σ(v) = r0w and σ(w) = r−1

0 v for some r0 ∈ R \ 0.
Now for either ι = gn ◦ σ or τ ◦ gn, ι(v) = rw and ι(w) = r−1v for some

r ∈ R \ 0. If we let

(17) ι∗|SX =

(
α β
γ δ

)
,

then as in (12) this implies that for v = (x, y) with x
y = −b+

√
d

2a , the ratio x
y is

interchanged with its conjugate via ι. Hence, we have that

(18)
α−b±

√
d

2a + β

γ−b±
√
d

2a + δ
=

−b∓
√
d

2a
.

This implies that

(19)
−b±

√
d

2a
α+ β =

c

a
γ +

−b∓
√
d

2a
δ.

Thus we have that

(20) δ = −α, γ = −b

c
α+

a

c
β.
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Moreover, since det(ι) = −1, we also have that

(21) α2 − b

c
αβ +

a

c
β2 = 1. □

By the similarity of automorphisms in Theorem 1.1 and Theorem 1.2, we
have the following lemma. Let E12 ∈ Mat2×2(Z) be the matrix interchanging
two columns.

Lemma 3.3. Let X be a K3 surface with the intersection matrix (1) of Picard
lattice SX . If Aut(X) ∼= Z2 ∗ Z2 and a = c in (1), then for any involution ι,
ι∗|SX = hmE12 for some m, where h is in (4).

Proof. Suppose a = c. Let ι be an involution given by (2) with conditions (5).
Then by interchanging the two columns of (2), we will have a matrix with the
conditions in (3). The proof of Theorem 1.1 shows that any such matrix with
the conditions in (3) is a power of h, hence we will have the lemma. □

4. Applications

In this section, we apply our results to several examples.

4.1. Example 1

In [10], Mori showed that there is a non-singular quartic surface X in P3 with
a non-singular curve C of degree d and genus g if and only if (1) g = d2/8 + 1,
or (2) g < d2/8 and (d, g) ̸= (5, 3). More generally, we refer to [7].

Let X be a quartic hypersurface in P3 whose Picard lattice SX has the
intersection matrix

(22)

(
4 d
d 2g − 2

)
generated by {H = OX(1), C}. If g = d2/8 + 1, then the discriminant of (22)
is zero. In this case, by Theorem 2.7, the automorphism group is finite. Hence
we assume that g < d2/8.

We consider a K3 surface X whose Picard lattice SX has the following
intersection matrix

(23) QSX
=

(
4 2n
2n 4

)
with d := −disc(SX) = 4(n2 − 4) > 0. Since X has no divisors of self-
intersection number 0 or −2, Aut(X) is either Z or Z2 ∗ Z2 by Theorem 2.7.

First, we determine the generator of automorphisms of infinite order in
Aut(X). By the relations (3), an automorphism g of infinite order with g∗|SX

in (2) satisfies γ = −β, δ = α− nβ and α2 − nαβ + β2 = 1. Now by Theorem
1.1, g∗|SX is a power of h, where

(24) h =

(
n 1
−1 0

)
.
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Indeed, we have the following.

Proposition 4.1. For a K3 surface X whose intersection matrix of Picard
lattice SX is given in (23) with d = −disc(SX) = 4(n2 − 4) > 0, Aut(X) ∼= Z.
The generator is as follows:

(1) if n is even, g∗ = h4 is the generator of Z and symplectic.
(2) if n is odd (̸= 3), g∗ = h6 is the generator of Z and symplectic.
(3) if n = 3, g∗ = h3 is the generator of Z and anti-symplectic.

Proof. As Claim in Section 3.1, let αk, βk be the first row of hk. Then we have
αk+1 = nαk − βk and βk+1 = αk. For example, (α1, β1) = (n, 1), (α0, β0) =
(1, 0) and (α−1, β−1) = (0,−1), etc. It is easily shown that (h4 − I2)Q

−1
SX

is

an integer matrix for even n and (h6 − I2)Q
−1
SX

is an integer matrix for odd n.
Moreover, these powers are the minimal in order to be an integer matrix. In
other words, for even number n, (hk ± I2)Q

−1
SX

is not an integer matrix for any

k ≤ 3. Similarly, for n ̸= 3 odd, (hk ± I2)Q
−1
SX

is not an integer matrix for any
k ≤ 5.

Now by Proposition 2.5, h4 (n even) or h6 (n ̸= 3 odd) can be extended to
an isometry of H2(X,Z) and by Torelli theorem it defines an automorphism of
X. Hence h4 for n even (h6 for n ̸= 3 odd) is the generator of automorphisms
of infinite order of Aut(X). Moreover, by Lemma 2.6, both h4 and h6 are
symplectic. By the same argument, h3 is the generator of automorphisms of
infinite order of Aut(X) for n = 3 and is anti-symplectic.

Now by assuming Aut(X) ∼= Z2 ∗ Z2, we will derive a contradiction. If we
assume that Aut(X) ∼= Z2 ∗ Z2, then, by Theorem 1.2,

(25) τ∗|SX =

(
p q

q − np −p

)
,

where p2 − npq + q2 = 1. Moreover, by Lemma 3.3, both τ∗|SX and σ∗|SX

are the matrices obtained from hk by interchanging columns for some k. For
example, τ∗|SX := τk = hkE12, i.e.,

(26) τ∗|SX =

(
αk βk

−βk αk − nβk

)(
0 1
1 0

)
=

(
βk αk

αk − nβk −βk

)
,

where (αk, βk) is the first row of hk.
Since τ is anti-symplectic, by Lemma 2.6, (τ∗|SX + id)Q−1

SX
is an integer

matrix. Note that if

(τ∗|SX + id)Q−1
SX

=
1

2(n2 − 4)

(
nαk − 2βk − 2 −2αk + nβk + n
−2αk + nβk + n nαk − 2βk − 2− (n2 − 4)βk

)
=:

1

2(n2 − 4)
(aij)i,j=1,2

(27)

is an integer matrix, then βk is even because 2(n2 − 4) divides both a11 and
a22, hence their sum.
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Now if n is odd, then since a12 = −2αk + n(βk + 1) is even, βk is odd, a
contradiction.

If n is even, βk is even only if k is even and αk is even only if k is odd.
Hence, τ∗|SX := τ∗2l|SX = h2lE12 for some l. Now by multiplying g = h4

or g−1 = h−4, we may assume that h2E12 or E12 is an isometry of an anti-
symplectic automorphism on SX since g is symplectic. However, by Lemma
2.6, this is not possible. □

4.2. Example 2

We consider a K3 surface X whose Picard lattice SX has the following
intersection matrix

(28)

(
2 n
n 2

)
.

Note that d := −disc(SX) = n2 − 4 > 0 and for n ̸= 3, Aut(X) is either Z
or Z2 ∗ Z2 by Theorem 2.7. In [4, Example 4], Galluzzi, Lombardo and Peters
proved that Aut(X) ∼= Z2∗Z2 by finding generators. We can also find the same
generators by using our results.

By Theorem 1.1, an automorphism g of infinite order in (2) satisfies γ =
−β, δ = α − nβ and α2 − nαβ + β2 = 1. Moreover, by Theorem 1.1, g∗|SX is
a power of h, where

(29) h =

(
n 1
−1 0

)
.

As the example above, we have that h2 is a symplectic automorphism.
Moreover, by Theorem 1.2, we may have an anti-symplectic involution σ

which satisfies

(30) σ∗|SX =

(
p q

q − np −p

)
,

where p2 − npq + q2 = 1. By Lemma 3.3, h2 = σ∗|SX ◦ τ∗|SX and σ∗|SX =
hE12, τ

∗|SX = h−1E12, hence

(31) σ∗|SX =

(
1 n
0 −1

)
and τ∗|SX =

(
−1 0
n 1

)
.

Moreover, by Lemma 2.6 and Torelli theorem, σ and τ are anti-symplectic
involutions. Hence Aut(X) ∼= Z2 ∗ Z2 with generators σ and τ .

Remark 4.2. When n = 4, X is the complete intersection of bidegree (1, 1) and
(2, 2) hypersurfaces in P2 × P2. When n = 5, X is the complete intersection of
bidegree (1, 2) and (2, 1) hypersurfaces in P2 × P2.
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