• 제목/요약/키워드: automatic steering control

검색결과 76건 처리시간 0.033초

영상처리기법을 이용한 자율주행시스템 개발 (Development of Automatic Steering System using Image Processing Technique)

  • 조지운;박성원
    • 산업공학
    • /
    • 제10권2호
    • /
    • pp.69-77
    • /
    • 1997
  • Material handling equipment such as container cranes and transtainer cranes have made larger and faster to improve the efficiency of container handling. As conditions of use in container terminal have become severe, and also the automation level required has become higher. For the high level automation for transtainer crane, the following characteristics have to be developed 1) Container Terminal Operation & Planning System with high efficiency. 2)Autosteering System of transtainer crane with precise position sensing system using image processing and feedback control system. 3)Automatic Position Identification System with transponder. We have developed an AGSS(Automatic Gantry Steering System) of transtainer crane with image processing technology preferentially. In this paper, the system will be introduced.

  • PDF

조향 함수를 고려한 UCT/AGV 설계 및 구현 (UCT/AGV Design and Implementation using steering function in automizing port system)

  • 윤경식;이동훈;강진구;이권순;이장명
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 춘계학술대회논문집
    • /
    • pp.47-56
    • /
    • 2000
  • In this study, as the preliminary step for developing an unmanned vehicle to deliver a container-box, we designed and implemented Automatic Guided Vehicle(AGV) Simulator for the purpose of Port Facilities Automation. It is preferable to research the intelligent AGV for delivery all day long. For complementing AGV simulator driving, we used multiple-sensor systems with vision, ultrasonic, IR and adapted the high-speed wireless LAN that satisfies the IEEE 802.11 Standard for bi-directional communication between main processor in AGV and Host computer. Here, we mounted on bottom frame in AGV Pentium-III processor, which combine and compute the information from each sensor system and control the AGV driving, and used the 80C196KC micro-controller to control the actuating and steering motors.

  • PDF

음성인식모듈을 이용한 선박조타용 임베디드 시스템 개발 (Development of an Embedded System for Ship′s Steering Gear using Voice Recognition Module)

  • 서기열;홍태호;김화영;박계각
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.144-148
    • /
    • 2004
  • Recently, various studies had been made for automatic control system of small ships, in order to improve maneuvering and to reduce labor and working on board. To achieve efficient operation of small ships, it had accomplished to rapid development of automatic technique, but the ship operation had been more complicated because of the need to handle various gauges and instruments. To solve these problems, there are examples to be applied to the speech information processing technologies which is one of the human interface methods in the system operation of ship, but the implementation of definite system is still incomplete. Therefore, the purpose of this paper is to implement the control system for ship steering using the voice recognition module.

  • PDF

DGPS를 이용한 자동 운항 제어기 설계 및 개발 (Design and Development of Automatic Maneuvering Controller Using DGPS)

  • 김기영;이명일;허석;곽문규
    • 제어로봇시스템학회논문지
    • /
    • 제12권9호
    • /
    • pp.850-855
    • /
    • 2006
  • This is concerned with the development and design of automatic maneuvering system using Differential Global Positioning System(DGPS). To achievement of autonomous maneuvering controller for giant ship, first, we investigated automatic maneuvering controller using DGPS in motor car. The sensors are configured with DGPS and digital compass. We calculated velocity and steering angle of motor car based on sensor signal. To design the controller, we derived the bicycle model and developed critically damped controller. The critically damped controller can be tracing previously appointed position in the fastest time. We are used a laptop computer to realize and the control algorithm is programmed by visual basic software. The obtained experimental results from developed system show unmanned motor car is good tracing planed positions. Hence, the system is looking forward to use the autonomous maneuvering control fur giant ship.

Design of an RCGA-based Linear Active Disturbance Rejection Controller for Ship Heading Control

  • Ahn, Jong-Kap;So, Myung-Ok
    • 한국항해항만학회지
    • /
    • 제44권5호
    • /
    • pp.423-429
    • /
    • 2020
  • A ship's automatic steering system is the basis for addressing control difficulties related to course-changing and course-keeping during navigation through heading angle control, and is a link in realizing unmanned and autonomous ships. This study proposes a robust RCGA-based linear active disturbance rejection controller (LADRC) design method considering environmental disturbances, measurement noise, and model uncertainties in designing a ship heading controller for use when the ship is sailing. The LADRC consisted of a transient profile, a linear extended state observer, and a PD controller. The control gains in the LADRC with the linear extended state observer were adjusted by RCGAs to minimize the integral of the time-weighted absolute error (ITAE), which is an evaluation function of the control system. The proposed method was applied to ship heading control, and its effectiveness was validated by comparing the propulsive energy loss between the proposed method and a conventional linear PD controller. The simulation results showed that the proposed method had the advantages of lower propulsive energy loss, more robustness, and higher tracking precision than the conventional linear PD controller.

폭이 좁은 차량의 비상주행시 주행성능개선을 위한 제어시스템에 관한 연구 (A Study on the Control System of the Narrow Vehicles for Improvement of Maneuvering under Emergency Situation)

  • 소상균
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.166-174
    • /
    • 2004
  • In urban area narrow commuter vehicles have attracted interest as a possible solution to reduce traffic congestion and parking problems. However, a narrow vehicle has an increased to overturn during hard cornering when compared to conventional vehicles. This tendency can be reduced by tilting it toward the inside of the turn. Two types of automatic tilting control systems which are Direct Tilt Control(DTC) and Steering Tilt Control(STC) have been developed. In this paper as one of the technique to improve the handling performance for the unusual vehicle the control system which blends both the DTC and the STC system is considered. It uses the merits of both the DTC and the STC system. As a control strategy for combination the switching control method is used. Finally, the fact that the unusual vehicle is safe under an emergency situation such as slippery road surface is proved by computer simulation.

무인차량의 강인한 조향제어 시스템 설계에 관한 연구 (Development of Steering System for Unmanned Vehicle by Using Robust Control)

  • 정승권;김인수;박기선;이종년;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제8권9호
    • /
    • pp.747-756
    • /
    • 2002
  • The automatic steering system for unmanned vehicle was developed. The magnet and MR (Magnetoresistive) sensors are used for the tue detecting system. The lateral distance between sensor and the center line of the road is determined by the linearization of the distance according to the output. The PD control theory is used for the design of the controller to compare with $H_\infty$ control theory. The $H_\infty$ control theory is used for the design of the controller to reduce the disturbance. The performance of the PD controller and $H_\infty$ controller is compared in simulations and tests. The PD controller is easy to tune in the test site. The $H_\infty$ controller is robust far the disturbances in the test results.

Development of Vision Based Steering System for Unmanned Vehicle Using Robust Control

  • Jeong, Seung-Gweon;Lee, Chun-Han;Park, Gun-Hong;Shin, Taek-Young;Kim, Ji-Han;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1700-1705
    • /
    • 2003
  • In this paper, the automatic steering system for unmanned vehicle was developed. The vision system is used for the lane detection system. This paper defines two modes for detecting lanes on a road. First is searching mode and the other is recognition mode. We use inverse perspective transform and a linear approximation filter for accurate lane detections. The PD control theory is used for the design of the controller to compare with $H_{\infty}$ control theory. The $H_{\infty}$ control theory is used for the design of the controller to reduce the disturbance. The performance of the PD controller and $H_{\infty}$ controller is compared in simulations and tests. The PD controller is easy to tune in the test site. The $H_{\infty}$ controller is robust for the disturbances in the test results.

  • PDF

신경회로망 동정기를 이용한 AGV의 주행제어에 관한 연구 (A Study on Driving Control using Neural Network Identifier)

  • 이영진;이진우;손주한;최성욱;김한근;조현철;이권순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.151-151
    • /
    • 2000
  • The objective of this paper is to develop the new robust and adaptive control system against external environments as applying the probabilistic recognition which is one of the inherent properties of immune system, ability of learning and memorization, and regulation theory of immune network to the system under engineering point of view. In this paper, HIA(Humoral Immune Algorithm) PID controller using Neural Network Identifier was proposed to drive the autonomous guided vehicle(AGV) more effectively. To verify the performance of the proposed HIA PID controller, some experiments for the control of steering and speed of that AGV are performed.

  • PDF

A Control Method of Driving a Paddy Vehicle Straight Ahead for Automatic Operation

  • Nagasaka, Yoshisada;Shigeta, Kazuto;Sato, Junichi
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.1055-1062
    • /
    • 1996
  • A method for automatically driving paddy vehicles, such as rice transplanters, etc., straight ahead in a paddy field was investigated . The direction of such vehicles must be precisely controlled to do the operations as straight. However, the alignment of the from wheels becomes distorted due to the unevenness of the ground, preventing the vehicle form going straight. If the proper alignment of the front wheels is maintained , the vehicle can be driven straight ahead greater precision. To investigate the influence of the ground uneveness, the behavior of a paddy vehicle running over an obstacle was quantified. The left wheel ran over an obstacle on a flat concrete road surfaced. When the steering wheel was free, the front wheels were forced toward the left when vehicle went up the obstacle and toward the right when the vehicle went down it. The torsion of the wheel when the vehicle went down the obstacle was larger than that when it went up ,so it turned right 5 degrees. Sinc hydraulic control steering decreased the steering angle , it turned right 3 degrees. These results suggest that a vehicle can be driven straight ahead with high precision when the steering angle is changed in response to the direction and inclination of the vehicle . Such results were obtained in a paddy field tests.

  • PDF