• Title/Summary/Keyword: autoclave curing

Search Result 63, Processing Time 0.026 seconds

An Experimental Study on the Compressive Strength of Ultra High Strength Concrete with Vacuum Water Absorbing Curing (진공포수양생을 적용한 초고강도 페이스트의 압축강도 발현에 관한 실험적 연구)

  • Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.27-28
    • /
    • 2019
  • In this study, the characteristics of compressive strength of ultra high strength concrete supplied with moisture from outside by vacuum water absorbing curing method were investigated. Specimens were prepared by replacing the binder(Silifa fume and GGBS) by 25 wt% with respect to the weight of cement at W/B 0.16. Each specimen was subjected to water Vacuum absorbing curing time 0 min, 30 min, 60 min, 90 min and 120 minutes immediately after the demolding. Curing was performed at $20^{\circ}C$ Air-dry curing, $90^{\circ}C$ steam curing, $90^{\circ}C$ steam curing and $180^{\circ}C$ autoclave curing. Experimental results showed that water absorbing degree increased with increasing water absorbing curing time, and BS25 sample had higher water absorbing degree than SF25 sample at same time. Compressive strength tended to increase up to about 40% in water absorbing degree, but compressive strength decreased again in water absorbing more than 40%.

  • PDF

An Experimental Study on the Curing Method and PP Fiber Mixing Ratio on Spalling Resistance of High Strength Concrete (양생요인 및 PP 섬유 혼입율 변화에 따른 고강도 콘크리트의 폭렬특성)

  • Han, Cheon-Goo;Kim, Won-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.113-119
    • /
    • 2009
  • This study is to investigate the fundamental and fireproof qualities of high strength concrete corresponding to changes in the curing factors and the PP fiber ratio. The results were as follows. For the fundamental characteristics of concrete, the fluidity was reduced in proportion to the increase in the PP fiber ratio. The compressive strength was somewhat reduced according to an increase in the PP fiber ratio. However, it had the high strength scope of more than 60 MPa at 7 days and of more than 90 MPa at 28 days. On the spalling mechanism followed by changes of the water content ratio, spalling was prevented in all combinations, except the specimen without PP fiber and subjected to 3.0% of moisture contents. When spalling was prevented at that time, the residual compressive strength ratio was 22%~41% and the mass reduction ratio was 5%~7%, which was relatively favorable. As the spalling mechanism corresponds to changes in the curing method, spalling was prevented in concrete with a PP fiber mixing ratio of more than 0.05% in the event of standard curing, and in concrete with a PP fiber mixing ratio of more than 0.10% in the case of steam curing and autoclave curing. In these cases, when spalling was prevented, the residual compressive strength ratio was 23~42% and the mass reduction ratio was 7~11%. In these results, the ease of spalling prevention in high strength concrete was inversely proportional to the water content ratio. Depending on the curing method, spalling was prevented in concrete with over 0.05% PP fiber with standard curing and in concrete with over 0.1% PP fiber with steam curing and autoclave curing.

Property change of geopolymers after immersion (지오폴리머의 침지 후 물성변화)

  • Kim, Hakmin;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.247-257
    • /
    • 2021
  • This study was started to investigate why autoclave curing (AC) specimen showed an improvement in compressive strength after immersion in water for a long time, although AC specimen did not showed a high initial compressive strength unlike our expectations. Distilled water and alkaline solutions were used for immersion and three different curing methods were engaged. It was expected that the compressive strength would be improved after immersion in alkaline solutions; however, there was little difference in compressive strength after 21 day immersion because both new crystallites produced by additional geopolymerization and expansion caused by the alkaline aggregate reaction may prevent the additional improvement in compressive strength. It was concluded that in order to secure the long-term commonality and underwater stability of the geopolymers, it is desirable aging geopolymers while immersing it underwater for more than 21 days after curing using an autoclave.

THE EFFECT OF AUTOCLAVE STERILIZATION AND REUSE OF $SMARTPEG^{TM}$ ON THE IMPLANT STABILITY QUOTIENT (ISQ) MEASUREMENT ($Smartpeg^{TM}$의 고압멸균소독 및 재사용이 임플랜트 안정성 지수(ISQ) 측정에 미치는 영향)

  • Kang, In-Ho;Kim, Myung-Joo;Lim, Young-Jun;Kim, Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.644-652
    • /
    • 2007
  • Statement of problem: Resonance frequency analysis is evaluated as the non-invasive and objective method for the evaluation of implant stability and has been increasingly used. It is necessary to evaluate the factors affect the ISQ measurement stability. Purpose: This study was performed to evaluate the effect of the autoclave sterilization and reuse of $Smartpeg^{TM}$ on ISQ measurement. Material and methods: $SmartPeg^{TM}$ (Integration Diagnostics Ltd., $G\ddot{o}teborg$, Sweden) of autoclave group (A) was autoclave sterilized 9 times and $Smartpeg^{TM}$ of reuse group (R) was reused 9 times. Ten $SmartPeg^{TM}s$ were allocated to each group and after each autoclave sterilization and reuse, implant stability quotient (ISQ) values were measured 3 times from the two directions a and b at a right angle. $Osstell^{TM}$ mentor (Integration Diagnostics Ltd. $G\ddot{o}teborg$, Sweden) was used and type 1 (article no. 100353) $Smartpeg^{TM}$ was selected according to $Smartpeg^{TM}$ reference list. Osstem Implant US II future (Osstem Co., Seoul, Korea) in $4.0mm{\times}11.5mm$ was embedded in the self-curing acrylic resin ($Orthojet^{(R)}$, Lang Dental, U.S.A.). Data was statistically analyzed by one-way ANOVA $({\alpha}=.05)$ and scheffe test was done where a significant difference exist. Correlation test was also done between ISQ value and the number of autoclave sterilization or reuse. Results: 1. In autoclave group, the means and sd. of ISQ value before autoclave sterilization were $84.97{\pm}0.41,\;84.93{\pm}0.74$ at direction a and b. There was significant differences between autoclave groups at direction a and b (P=.000). 2. In reuse group, the means and sd. of ISQ value before reuse were $85.40{\pm}0.62,\;85.50{\pm}0.57$ at direction a and b. There was no significant difference between reuse groups at direction a and b (P>.05). 3. There was a weak positive correlation between the number of reuse and ISQ value at direction a and b (${\gamma}=.207$ and .246, P<.01). Conclusion: Within the limitations of this study, the following conclusions were drawn. Till ninth reuse of $Smartpeg^{TM}$, the ISQ measurement stability did not be affected. After twice autoclave sterilization of $Smartpeg^{TM}$ the ISQ measurement stability was affected.

Drivability and Bearing Capacity of PHC Pile Foundation (PHC 말뚝의 항타시공성 및 지지력에 관한 연구)

  • Lee, Myung Whan;Lee, In Mo;Kim, Sang Gyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.223-234
    • /
    • 1993
  • The main characteristics of PHC piles is that silica material and autoclave curing technique are used when manufacturing to have higher strength than PC piles. In this paper, pile drivability and bearing capacity characteristics of the PHC piles are studied through numerical analysis based on wave propagation theory, driving records and pile load tests in situ. It is found that we can have higher bearing capacity by using the PHC piles rather than the PC on condition that the most effective driving equipment is chosen when driving the pile. In other words, since the PHC piles have higher resistance to driving energy, the heavier ram can be used in the driving process, which results in the higher bearing capacity.

  • PDF

Effect of Autoclave Curing on the Microstructure of Blended Cement Mixture Incorporating Ground Dune Sand and Ground Granulated Blast Furnace Slag

  • Alawad, Omer Abdalla;Alhozaimy, Abdulrahman;Jaafar, Mohd Saleh;Aziz, Farah Nora Abdul;Al-Negheimish, Abdulaziz
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.381-390
    • /
    • 2015
  • Investigating the microstructure of hardened cement mixtures with the aid of advanced technology will help the concrete industry to develop appropriate binders for durable building materials. In this paper, morphological, mineralogical and thermogravimetric analyses of autoclave-cured mixtures incorporating ground dune sand and ground granulated blast furnace slag as partial cementing materials were investigated. The microstructure analyses of hydrated products were conducted using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), differential thermal analysis (DTA), thermo-graphic analysis (TGA) and X-ray diffraction (XRD). The SEM and EDX results demonstrated the formation of thin plate-like calcium silicate hydrate plates and a compacted microstructure. The DTA and TGA analyses revealed that the calcium hydroxide generated from the hydration binder materials was consumed during the secondary pozzolanic reaction. Residual crystalline silica was observed from the XRD analysis of all of the blended mixtures, indicating the presence of excess silica. A good correlation was observed between the compressive strength of the blended mixtures and the CaO/$SiO_2$ ratio of the binder materials.

The Mechanical Properties of Several Fiber Reinforced Cement under Different Curing Condition (양생조건에 따른 각종 섬유보강시멘트의 기계적 성질)

  • 정문영;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.437-442
    • /
    • 1998
  • In order to investigate the mechanical properties of several fibers for reinforced cement these speciments with 2wol% of ARG and organic fibers were formed by vacuum extrusion process. After steam curing and autoclaving the flexural strength and the elastic modulus of FRC were measured. It was found that the ARG-FRC showed the elastic-brittle fracture behavior in both steam cured and autoclaved condition. And also the steam cured PP and PVA-FRC had elstic-plastic behavior but their ductility were reduced and changed to the elastic-brittle after autoclaving This change in mechanical behavior was found to be related to the thermal stablity of thes organic fibers.

  • PDF

An Experimental Study on Developing Ultra-High Strength Powder Concrete Using Low-heat Portland Cement (저열 포틀랜드 시멘트를 사용한 초고강도 분체 콘크리트 개발에 관한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Kim, Heoun;Park, Jin-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.135-147
    • /
    • 2009
  • In order to develop the ultra high strength concrete over 400Mpa at 28 day, Low-heat portland cement, ferro-silicon, silica-fume and steel fiber were mixed and tested under the special autoclave curing conditions. Considering the influence of Ultra high strength concrete. normal concrete is used as a comparison with low water-cement ratio possible Low-heat portland cement. Additionally, as a substitution of aggregates, we analyzed the compressive strength of Ferro Silicon by making the states of mixed and curing conditions differently. In addition, SEM films testified the development of C-S-H hydrates of Type III & Type IV, and tobermolite, zonolite due to the high temperature, high pressure of autoclave curing. Fineness of aggregate, filler and reactive materials in concrete caused 420Mpa compressive strength at 28day successfully.

A Feasibility Study of RTM Application on Secondary Fairing Structure of Aircraft (비용절감을 위한 항공기 2차 Fairing구조물의 RTM 적용 가능성 연구)

  • 김태곤;이동준;이건영;신대영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.189-192
    • /
    • 2002
  • The autoclave process is frequently utilized in the manufacturing of aircraft parts because of the low void content and high fiber volume fraction. However, due to the slow curing process (5∼8 hours per part) and it's limited producibility for complicated shape, this process is very expensive and applied to the relatively simple geometry structures. RTM is considered as an alternative process to overcome the limitation of autoclave process. In this study, the idea of RTM application on the secondary Fairing structure of aircraft has been proved to be technically feasible and very cost effective by changing the multiple part of subassembly into one integral composite structure.

  • PDF

A Study on Physical Properties of Concrete using Admixtures for High Strength Concrete (고강도콘크리트용 혼화재를 사용한 콘크리트의 물성에 관한 연구)

  • 이승한
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.155-164
    • /
    • 1995
  • This study was performed to get high strength of the precase concrete adopting a steam curing by using a gypsum-admixture for the high strength concrete. The superplasticizer was used to compensate low slump of base concrete keeping its slump up about $6{\pm}1cm$. To examine the property for strength revelation of concrete using admixtures for a high strength concrete, steam and standard curing were compared each other. Test results were shown that admixtures for high strength concrete were more effective in steam curing than standard curing. On the condition that the unit cement content is about $530{\sim}600kg/m^3$, the compressive strength of concrete replacing by 10% of the admixture was obtained over $65Okgf/cm^2$, which was increased as 1.3 times as that for the nonreplacement. When the admixture was replaced to 15-30%, the compressive strengh was obtained over $700kgf/cm^2$ which was increased as 1.4 - 1.5 times. Therefore, the admixture for high strength concrete, being effective in steam curing, was more efficient to get a high strength concrete using only steam curing instead of an autoclave curing for the secondary products of cement.