• 제목/요약/키워드: atom

검색결과 1,691건 처리시간 0.023초

3차원 원자단층현미경을 활용한 기능성 재료의 구조-특성 관계 해석 (Understanding the Structure-Property Relationship in Functional Materials Using 3D Atom Probe Tomography)

  • 정찬원
    • 한국전기전자재료학회논문지
    • /
    • 제37권5호
    • /
    • pp.476-485
    • /
    • 2024
  • Understanding the structure-property relationship in functional materials is crucial as microstructural features such as nano-precipitates, phase boundary, grain boundary segregation, and grain boundary phases play a key role in their functional properties. Atom probe tomography (APT) is an advanced analytical technique that allows for the three-dimensional (3D) mapping of atomic distributions and the precise determination of local chemical compositions in materials. Moreover, it offers sub-nanometer spatial resolution and chemical sensitivity at the tens of parts per million (ppm) level. Owing to its unique capabilities, this technique has been employed to uncover the 3D elemental distributions in a wide range of materials, including alloys, semiconductors, nanomaterials, and even biomaterials. In this paper, various kinds of examples are introduced for elucidating structure-property relationships on functional materials by utilizing the atom probe tomography.

물 분자의 해리에 의한 Si (001)-c(4×2) 표면에서의 수산화기의 균일한 분포 (Regular Distribution of -OH Fragments on a Si (001)-c(4×2) Surface by Dissociation of Water Molecules)

  • 이수경;오현철;김대희;정용찬;백승빈;김영철
    • 한국재료학회지
    • /
    • 제20권9호
    • /
    • pp.457-462
    • /
    • 2010
  • Adsorption of a water molecule on a Si (001) surface and its dissociation were studied using density functional theory to study the distribution of -OH fragments on the Si surface. The Si (001) surface was composed of Si dimers, which buckle in a zigzag pattern below the order-disorder transition temperature to reduce the surface energy. When a water molecule approached the Si surface, the O atom of the water molecule favored the down-buckled Si atom, and the H atom of the water molecule favored the up-buckled Si atom. This is explained by the attractions between the negatively charged O of the water and the positively charged down-buckled Si atom and between the positively charged H of the water and the negatively charged up-buckled Si atom. Following the adsorption of the first water molecule on the surface, a second water molecule adsorbed on either the inter-dimer or intra-dimer site of the Si dimer. The dipole-dipole interaction of the two adsorbed water molecules led to the formation of the water dimer, and the dissociation of the water molecules occurred easily below the order-disorder transition temperature. Therefore, the 1/2 monolayer of -OH on the water-terminated Si (001) surface shows a regular distribution. The results shed light on the atomic layer deposition process of alternate gate dielectric materials, such as $HfO_2$.

Density Functional Theory를 이용한 Si (001) 표면 위의 In 나노선 성장 연구 (Indium Nanowire Growth on Si (001) Surface Using Density Functional Theory)

  • 김대현;김대희;서화일;김영철
    • 한국재료학회지
    • /
    • 제19권3호
    • /
    • pp.137-141
    • /
    • 2009
  • Density functional theory was utilized to investigate the growth of an indium nanowire on a Si (001) buckled surface. A site between the edge of two Si dimers is most favorable when the first In atom is adsorbed on the surface at an adsorption energy level of 2.26 eV. The energy barriers for migration from other sites to the most favorable site are low. When the second In atom is adsorbed next to the first In atom to form an In dimer perpendicular to the Si dimer row, the adsorption energy is the highest among all adsorption sites. The third In atom prefers either of the sites next to the In dimer along the In dimer direction. The fourth In atom exhibited the same tendency showed by the second atom. The second and fourth In adsorption energy levels are higher than the first and third levels as the In atoms consume the third valence electron by forming In dimers. Therefore, the In nanowire grows perpendicular to the Si dimer row on the Si (001) surface, as it satisfies the bonding of the three valence electrons of the In atoms.

CsCl 구조를 가지는 CoX(X = Ti, V, Nb) (001) 표면의 자성에 대한 제일원리 연구 (A First-principles Study on the Surface Magnetism of the CsCl Structured CoX (X = Ti, V, Nb) (001) Surface)

  • 김동철
    • 한국자기학회지
    • /
    • 제25권5호
    • /
    • pp.139-143
    • /
    • 2015
  • CsCl 구조를 가지는 CoX(X = Ti, V, Nb) 이원화합물에서 (001) 표면계의 전자구조를 제일원리 전자구조 계산방법을 이용하여 계산하고 표면자성을 연구하였다. Co 원자로 끝나는 CoTi(001)계에서 표면 Co 원자의 자기모멘트는 가운데 층 Co 원자에 비해 상당히 증가한 $1.19{\mu}_B$였다. V 원자로 끝나는 CoV(001) 표면계에서 표면 V 원자의 자기모멘트는 가운데 층의 2.5배로서 $1.64{\mu}_B$이고, Co 원자로 끝나는 계에서 표면 Co 원자의 자기모멘트는 $1.34{\mu}_B$로 덩치 Co 원자에 비해 다소 감소하였다. CoNb(001)계에서 Nb 원자로 끝나는 계의 경우, 표면 Nb 원자의 자기모멘트는 가운데 층 Nb 원자에 비해 다소 감소한 $0.26{\mu}_B$였으며, Co 원자로 끝나는 표면계의 경우 자성이 사라졌다.

UML을 활용한 컴포넌트 기반의 GIS 개발방법론에 관한 연구 (A Study on the Component-based GIS Development Methodology using UML)

  • 박태옥;김계현
    • 한국공간정보시스템학회 논문지
    • /
    • 제3권2호
    • /
    • pp.21-43
    • /
    • 2001
  • 오늘날 GIS 영역을 포함하는 정보시스템 개발 환경은 소프트웨어의 복잡성 및 다양성 그리고 분산처리 및 네트워크 컴퓨팅 등의 측면에서 과거에 비해 현저하게 변화되었다. 이에 신속하게 대응하기 위하여 소프트웨어 개발 패러다임에 변화가 일어나고 있으며 객체지향기술에 바탕을 둔 컴포넌트 기반 개발이 대세로 자리잡고 있다. GIS 개발에서도 국내외적으로 관련 표준 지침을 만들어 컴포넌트에 기반한 개발을 독려하고, 앞으로 컴포넌트 기술의 적용이 증가하는 추세이다. 이러한 추세에 부응하여 GIS를 위한 컴포넌트 기반개발 방법론의 필요성이 대두되나 아직 연구가 충분히 이루어지지 못하는 실정이다. 본 연구는 UML을 활용한 컴포넌트 기반의 GIS 개발 방법론(ATOM Advanced Technology Of Methodology for GIS)의 프로세스의 제안과 함께 사례연구를 통하여 이의 적용가능성을 확인하는 것이다. ATOM은 컴포넌트 개발 그 자체를 지원할 뿐만 아니라 식별된 컴포넌트와 기존 재사용 가능한 컴포넌트에 바탕을 둔 소프트웨어 개발 생명주기 전체 단계를 지원하는 전사적인 GIS 구축 방법론이다. ATOM은 생명 주기 각 단계에 대한 주요 활동과 각각의 활동을 수행하기 위한 작업들을 정의하였다. 또한 작업간 입력물과 출력물을 제시하고, 각종 문서화를 위한 표준 양식과 항목을 제시하며 작업들의 성공적 수행을 위한 상세한 지침을 제시하여 최대한 방법론의 이해를 돕고자 하였다. 무엇보다도 ATOM의 가장 중요한 특징은 단순한 기능과 최소의 크기, 최대의 재사용을 위한 컴포넌트 추출에 목적을 두고 GIS 도메인의 여러 특징을 고려한 GIS를 위한 컴포넌트 기반의 개발방법론이라 할 수 있다. ATOM의 사례 적용은 재사용 및 상호운용성이 뛰어난 컴포넌트의 추출과 함께 보다 체계적이고 구체적인 개발 가이드 라인을 제공하여 응용GIS 구축의 생산성 및 품질 향상에 기여할 뿐만 아니라 우리의 최종목표인 GIS 소프트웨어 자동 생산에도 크게 기여할 것으로 사료된다.

  • PDF

3D-QSAR Studies on 2-(indol-5-yl)thiazole Derivatives as Xanthine Oxidase (XO) Inhibitors

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제8권4호
    • /
    • pp.258-266
    • /
    • 2015
  • Xanthine Oxidase is an enzyme, which oxidizes hypoxanthine to xanthine, and xanthine to uric acid. It is widely distributed throughout various organs including the liver, gut, lung, kidney, heart, brain and plasma. It is involved in gout pathogenesis. In this study, we have performed Comparative Molecular Field Analysis (CoMFA) on a series of 2-(indol-5-yl) thiazole derivatives as xanthine oxidase (XO) inhibitors to identify the structural variations with their inhibitory activities. Ligand based CoMFA models were generated based on atom-by-atom matching alignment. In atom-by-atom matching, the bioactive conformation of highly active molecule 11 was generated using systematic search. Compounds were aligned using the bioactive conformation and it is used for model generation. Different CoMFA models were generated using different alignments and the best model yielded a cross-validated $q^2$ of 0.698 with five components and non-cross-validated correlation coefficient ($r^2$) of 0.992 with Fisher value as 236.431, and an estimated standard error of 0.068. The predictive ability of the best CoMFA models was found to be $r^2_{pred}$0.653. The CoMFA study revealed that the $R_3$ position of the structure is important in influencing the biological activity of the inhibitors. Electro positive groups and bulkier substituents in this position enhance the biological activity.

HQSAR Analysis on Novel series of 1-(4-Phenylpiperazin-1-yl-2-(1H-Pyrazol-1-yl) Ethanone Derivatives Targeting CCR1

  • Balasubramanian, Pavithra K.;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제6권3호
    • /
    • pp.163-169
    • /
    • 2013
  • The chemokine receptor CCR1 a GPCR super family protein contains seven transmembrane domains. It plays an important role in rheumatoid arthritis, organ transplant rejection, Alzheimer's disease and also causes inflammation. Because of its role in disease processes, antagonism of CCR1 became an attractive therapeutic target. In the current study, we have taken a novel series of recently reported CCR1 antagonist of 1-(4-Phenylpiperazin-1-yl_-2-(1H-Pyrazol-1-yl) ethanone derivatives and performed a HQSAR analysis. The model was developed with Atom (A) and bond (B) parameters and with different set of atom counts to improve the model. The results of HQSAR showed good predictive ability in terms of $r^2$ (0.904) and $q^2$ (0.590) with 0.710 as standard error of prediction and 0.344 as standard error of estimate. The contribution map depicted the atom contribution in inhibitory effect. Compound-14 which was reported to be a highly active compound showed positive atom contribution in three R groups ($R^3$. $R^{5a}$ and $R^{2b}$) in inhibitory effect, which could be the reason why this compound is highly active compound whereas, the lowest active compound-6 showed negative contribution to inhibitory effect.

Si(001) 표면과 acetone 분자의 상호작용에 대한 이론적 연구 (Interaction of acetone molecule on Si(001) surface: A theoretical study)

  • 백승빈;김대희;김영철
    • 반도체디스플레이기술학회지
    • /
    • 제7권3호
    • /
    • pp.35-39
    • /
    • 2008
  • We study the interaction of acetone molecule $[(CH_3)_2CO]$ on Si(001) surface using density functional theory. An acetone molecule is adsorbed on a Si atom of the Si dimer of the Si(001) surface. The adsorption of the acetone molecule on the Si atom at lower height between the two Si atoms of the dimer is more favorable than that on the Si atoms at upper height. Then we calculate an energy variation of dissociation and four-membered ring structures of the acetone molecule adsorbed on the Si surface. Total energy difference between the two structures is about 0.05 eV, indicating that the two structures are almost equally stable. Energy barrier exists when a hydrogen atom is dissociated and adsorbed on the other Si atom of the dimer, while energy barrier does not exist when the adsorbed acetone molecule changes to four-membered ring structure, except for the rotation of the acetone molecule along z-direction. Therefore, four-membered ring structure is kinetically more favorable than the dissociation structure when the acetone molecule is adsorbed on the Si(001) surface.

  • PDF

Synthesis and Characterization of MPEG-b-PDPA Amphiphilic Block Copolymer via Atom Transfer Radical Polymerization and Its pH-Dependent Micellar Behavior

  • Dayananda, Kasala;Kim, Min-Sang;Kim, Bong-Sup;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • 제15권4호
    • /
    • pp.385-391
    • /
    • 2007
  • Block copolymer micelles are generally formed via the self-assembly of amphiphilic block copolymers in an aqueous medium. The hydrophilic and hydrophobic blocks form shell and core micelles, respectively. The block copolymers of methoxy poly(ethylene glycol) (MPEG)-b-poly(2-diisopropylamino)ethyl methacrylate (PDPA) were synthesized via atom transfer radical polymerization, with the macro initiator synthesized by the coupling of 2-bromoisobutyryl bromide with MPEG in the presence of a triethyl amine base catalyst. The atom transfer radical polymerization of 2-diisopropylamino)ethyl methacrylate was performed in conjunction with an N,N,N',N",N"-pentamethyl-diethylenetriamine/copper bromide catalyst system, in DMF, at $70^{\circ}C$. The pH induced micellization/demicellization was studied using fluorescence, with a pyrene probe. Furthermore, the pH dependent micellization was confirmed using the microviscosity method, with a dipyme fluorescence probe. The pH dependant micelle size distribution was studied using dynamic light scattering. The characterization of the synthesized polymers was established using gel permeation chromatography and from the $^1H-nuclear$ magnetic resonance spectroscopy.

Nicotinic Acid Hydrochloride의 結晶構造 (The Crystal Structure of Nicotinic Acid Hydrochloride)

  • 구정회;김훈섭
    • 대한화학회지
    • /
    • 제7권4호
    • /
    • pp.257-263
    • /
    • 1963
  • The crystal structure of nicotinic acid hydrochloride has been determined by two-dimensional x-ray method. The unit cell is monoclinic with a = 7.21 ${\AA}$, b = 6.69 ${\AA}$, c = 7.54 ${\AA}$, ${\beta}=100^{\circ}$, space group $C{\frac{2}{2}}-P2_1$, and contains two formula units. Weissenberg diagrams have been taken along the a, b and c axes with Cu K${\alpha}$ radiation and the positions of the atoms have been fixed by means of two dimensional Patterson syntheses, a Fourier projection along the b-axis and trial and error method. The bond lengths are: pyridine ring C-C = 1.38, 1.39 ${\AA}$, C-N = 1.34, 1.36 ${\AA}$, carboxyl group $C_4-C_6$ = 1.46 ${\AA}$, $C_6-O_1$ = l.33 ${\AA}$, $C_6-O_2$ = 1.19 ${\AA}$. The ring nitrogen atom may be regarded as forming bifurcated hydrogen bond with an oxygen atom $O_2$ of one neighbouring molecule and with a neighbouring chlorine atom, being linked by forming a hydrogen bond with an other oxygen atom $O_1$ of above mentioned neighbouring molecule, in such a way that chains parallel to the c-axis are formed.

  • PDF