Browse > Article
http://dx.doi.org/10.13160/ricns.2015.8.4.258

3D-QSAR Studies on 2-(indol-5-yl)thiazole Derivatives as Xanthine Oxidase (XO) Inhibitors  

Nagarajan, Santhosh Kumar (Department of Bioinformatics, School of Bioengineering, SRM University)
Madhavan, Thirumurthy (Department of Bioinformatics, School of Bioengineering, SRM University)
Publication Information
Journal of Integrative Natural Science / v.8, no.4, 2015 , pp. 258-266 More about this Journal
Abstract
Xanthine Oxidase is an enzyme, which oxidizes hypoxanthine to xanthine, and xanthine to uric acid. It is widely distributed throughout various organs including the liver, gut, lung, kidney, heart, brain and plasma. It is involved in gout pathogenesis. In this study, we have performed Comparative Molecular Field Analysis (CoMFA) on a series of 2-(indol-5-yl) thiazole derivatives as xanthine oxidase (XO) inhibitors to identify the structural variations with their inhibitory activities. Ligand based CoMFA models were generated based on atom-by-atom matching alignment. In atom-by-atom matching, the bioactive conformation of highly active molecule 11 was generated using systematic search. Compounds were aligned using the bioactive conformation and it is used for model generation. Different CoMFA models were generated using different alignments and the best model yielded a cross-validated $q^2$ of 0.698 with five components and non-cross-validated correlation coefficient ($r^2$) of 0.992 with Fisher value as 236.431, and an estimated standard error of 0.068. The predictive ability of the best CoMFA models was found to be $r^2_{pred}$0.653. The CoMFA study revealed that the $R_3$ position of the structure is important in influencing the biological activity of the inhibitors. Electro positive groups and bulkier substituents in this position enhance the biological activity.
Keywords
Xanthine Oxidase; Gout; 3D-QSAR; CoMFA;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 D. A. Parks and D. N. Granger, "Xanthine oxidase: Biochemistry, distribution and hysiology", Acta Physiologica Scandinavica. Supplementum, Vol. 548, pp. 87-99, 1986.
2 M. Cicoira, L. Zanolla, A. Rossi, G. Golia, L. Franceschini, G. Brighetti, P. Zeni, and P. Zardini, "Elevated serum uric acid levels are associated with diastolic dysfunction in patients with dilated cardiomyopathy", Am. Heart J., Vol. 143, pp. 1107- 1111, 2002.   DOI
3 K. D. Pfeffer, T. P. Huecksteadt, and J. R. Hoidal, "Xanthine dehydrogenase and xanthine oxidase activity and gene expression in renal epithelial cells. cytokine and steroid regulation", J. Immunol., Vol. 153, pp. 1789-1797, 1994.
4 R. Guerciolini, C. Szumlanski, and R. M. Weinshilboum, "Human liver xanthine oxidase: nature and extent of individual variation", Clin. Pharmacol. Ther., Vol. 50, pp. 663-672, 1991.   DOI
5 R. Harrison, "Structure and function of xanthine oxidoreductase: Where are we now?", Free Radical Bio. Med., Vol. 33, pp. 774-797, 2002.   DOI
6 R. Harrison, "Physiological roles of xanthine oxidoreductase". Drug Metab. Rev., Vol. 36, pp. 363-375, 2004.   DOI
7 H. M. Kramer and G. Curhan, "The association between gout and nephrolithiasis: the national Hhealth and nutritieExamination survey III, 1988- 1994", Am. J. Kidney Dis., Vol. 40, pp. 37-42, 2002.   DOI
8 H. K. Choi and G. Curhan, "Gout: Epidemiology and lifestyle choices", Curr. Opin. Rheumatol., Vol. 17, pp. 341-345, 2005.
9 R. L. Wortmann, "Recent advances in the management of gout and hyperuricemia", Curr. Opin. Rheumatol., Vol. 17, pp. 319-324, 2005.   DOI
10 J. George and A. D. Struthers, "The role of urate and xanthine oxidase Inhibitors in cardiovascular disease", Cardiovascular Drug Reviews, Vol. 58, pp. 59-64, 2008.
11 N. Dalbeth and L. Stamp, "Allopurinol dosing in renal impairment: Walking the tightrope between adequate urate lowering and adverse events", Seminars in Dialysis, Vol. 20, pp. 391-395, 2007.   DOI
12 T.-F. Tsai and T.-Y. Yeh, "Allopurinol in dermatology", Am. J. Clin. Dermatol., Vol. 11, pp. 225-232, 2010.   DOI
13 B. L. Love, R. Barrons, A. Veverka, and K. M. Snider, "Urate-lowering therapy for gout: focus on febuxostat", Pharmacotherapy, Vol. 30, pp. 594-608, 2010.   DOI
14 J. U. Song, S. P. Choi, T. H. Kim, C.-K. Jung, J.- Y. Lee, S.-H. Jung, and G. T. Kim, "Design and synthesis of novel 2-(indol-5-yl)thiazole derivatives as xanthine oxidase inhibitors", Bioorg. Med. Chem. Lett., Vol. 25, pp. 1254-1258, 2015.   DOI
15 K. Abe, H. Shimokawa, K. Morikawa, T. Uwatoku, K. Oi, Y. Matsumoto, T. Hattori, Y. Nakashima, K. Kaibuchi, K. Sueishi, and A. Takeshit, "Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats", Circ. Res., Vol. 94, pp. 385-393, 2004.   DOI
16 T. Ishizaki, M. Uehata, I. Tamechika, J. Keel, K. Nonomura, M. Maekawa, and S. Narumiya, "Pharmacological properties of Y-27632, a specific inhibitor of Rho-associated kinases", Mol. Pharmacol., Vol. 57, pp. 976-983, 2000.
17 P. Geladi and B. R. Kowalski, "Partial least-squares regression: a tutorial", Anal. Chim. Acta, Vol. 185, pp. 1-17, 1986.   DOI
18 S. Wold, "Cross-validatory estimation of the number of components in factor and principal components models", Technometrics, Vol. 20, pp. 397-406, 1978.   DOI
19 P. Singh and T. Madhavan, "Histone deactylase inhibitors as novel target for cancer, diabetes, and inflammation", J. Chosun Natural Sci., Vol. 6, pp. 57-63, 2013.   DOI
20 B. Sathya and T. Madhavan, "Comparative molecular field analysis of caspase-3 Inihibitors", J. Choun Natural Sci., Vol. 7, pp. 166-172, 2014.   DOI
21 S. Kulkarni and T. Madhavan, "Application of docking methods: an effective in Silico tool for drug design", J. Chosun Natural Sci., Vol. 6, pp. 100-103, 2013.   DOI
22 M. Shalini and T. Madhavan, "Homology modeling of CCR 4: novel therapeutic target and preferential maker for Th2 Cells", J. Chosun Natural Sci., Vol. 7, pp. 234-240, 2014.   DOI
23 B. Sathya and T. Madhavan, "Comparative molecular mimilarity indices analysis of caspase-3 inhibitors", J. Chosun Natural Sci., Vol. 7, pp. 227- 233, 2014.   DOI
24 P. Pacher, A Nivorozhkin, and C. Szabo, "Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol", Pharmacol. Rev., Vol. 58, pp. 87-114, 2006.   DOI