Browse > Article
http://dx.doi.org/10.3740/MRSK.2009.19.3.137

Indium Nanowire Growth on Si (001) Surface Using Density Functional Theory  

Kim, Dae-Hyun (Department of Materials Engineering, Korea University of Technology and Education)
Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education)
Seo, Hwa-Il (School of Information Technology, Korea University of Technology and Education)
Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
Publication Information
Korean Journal of Materials Research / v.19, no.3, 2009 , pp. 137-141 More about this Journal
Abstract
Density functional theory was utilized to investigate the growth of an indium nanowire on a Si (001) buckled surface. A site between the edge of two Si dimers is most favorable when the first In atom is adsorbed on the surface at an adsorption energy level of 2.26 eV. The energy barriers for migration from other sites to the most favorable site are low. When the second In atom is adsorbed next to the first In atom to form an In dimer perpendicular to the Si dimer row, the adsorption energy is the highest among all adsorption sites. The third In atom prefers either of the sites next to the In dimer along the In dimer direction. The fourth In atom exhibited the same tendency showed by the second atom. The second and fourth In adsorption energy levels are higher than the first and third levels as the In atoms consume the third valence electron by forming In dimers. Therefore, the In nanowire grows perpendicular to the Si dimer row on the Si (001) surface, as it satisfies the bonding of the three valence electrons of the In atoms.
Keywords
Indium nanowire; Si (001) surface; DFT calculation; adsorption energy;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 P. Pulay, Chem. Phys. Lett., 73, 393 (1980)   DOI   ScienceOn
2 D. Vanderbilt, Phys. Rev. B, 41, R7892 (1990)   DOI   ScienceOn
3 G. Kresse and J. Furthuller, Phys. Rev. B, 54, 11169 (1996)   DOI   ScienceOn
4 G. Brocks, P. J. Kelly and R. Car, Phys. Rev. Lett., 70, 2786 (1993)   DOI   ScienceOn
5 J. R. Ahn, P. G. Kang, J. H. Byun and H. W. Yeom, Phys. Rev. B, 77, 035401 (2008)   DOI   ScienceOn
6 P. Kocan, L. Jurczyszyn, P. Sobotik and I. Ost'adal, Phys. Rev. B, 77, 113301 (2008)   DOI   ScienceOn
7 J. Nogami, A. A. Baski and C. F. Quate, Phys. Rev. B, 44, 1415 (1991)   DOI   ScienceOn
8 P. Kluth, Q.-T. Zhao, S. Winnerl, S. Lenk and S. Mantl, Appl. Phys. Lett., 79, 824 (2001)   DOI   ScienceOn
9 J. Nogami, B. Z. Liu, M. V. Katkov, C. Ohbuchi and N. O. Birge, Phys. Rev. B, 63, 233305 (2001)   DOI   ScienceOn
10 G. Y. Tseng and C. Ellenbogen, Science, 294, 1293 (2001)   DOI   ScienceOn
11 Z. C. Dong, D. Fujita and H. Nejoh, Phys. Rev. B, 63, 115402 (2001)   DOI   ScienceOn
12 M. M. R. Evans and J. Nogami, Phys. Rev. B, 59, 7644 (1999)   DOI   ScienceOn
13 G. Kresse and J. Hafner, Phys. Rev. B, 47, 558 (1993)   DOI   ScienceOn
14 G. Kresse and J. Furthüller, Comput. Mat. Sci., 6, 15 (1996)   DOI   ScienceOn
15 G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758 (1999)   DOI   ScienceOn
16 D. M. Wood and A. Zunger, J. Phys. A, 18, 1343 (1985)   DOI   ScienceOn
17 M. A. Albao, M. M. R. Evans, J. Nogami, D. Zorn, M. S. Gordon and J. W. Evans, Phys. Rev. B, 72, 035426 (2005)   DOI   ScienceOn
18 K. Momma and F. Izumi, J. Appl. Crystallogr., 41, 653 (2008)   DOI   ScienceOn