• Title/Summary/Keyword: atom

Search Result 1,689, Processing Time 0.03 seconds

A Crossed Beam Study of Atom-Radical Reaction Dynamics (원자-라디칼 반응 동력학의 교차 빔 연구)

  • Ju Seon-Gyu;Gwon Lee-Gyeong;Lee Ho-Jae;Choe Jong-Ho
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.163-164
    • /
    • 2003
  • Reaction dynamics plays an essential role in understanding the microscopic mechanism of elementary chemical processes at the molecular level. Detailed studies of the reactions of atomic species such as hydrogen and second-row atoms with small closed-shell molecules have provided important insights into hydrocarbon synthesis, combustion, interstellar space and atmospheric chemistry. Despite its mechanistic significance, however, the investigations of atom-radical reaction dynamics are quite scarce in comparison to the extensive studies of atom-molecule reactions. (omitted)

  • PDF

Extension to ATOM Schema for personalized IPTV Services (개인형 IPTV 서비스를 위한 ATOM 스키마 확장 연구)

  • Pyo, Shin-Jee;Kim, Mun-Churl
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.663-664
    • /
    • 2008
  • With advent of IPTV services and availability of various web contents, users can enjoy various contents via internet. In order to effectively provide a large amount of web contents to users, personalized IPTV services are required to the user's sides. In this paper, we extend the current ATOM schema for personalized IPTV services and propose a IPTV service framework based on IPTV personalization.

  • PDF

Structures of Pseudo Ideal and Pseudo Atom in a Pseudo Q-Algebra

  • Jun, Young Bae;Kim, Hee Sik;Ahn, Sun Shin
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.95-106
    • /
    • 2016
  • As a generalization of Q-algebra, the notion of pseudo Q-algebra is introduced, and some of their properties are investigated. The notions of pseudo subalgebra, pseudo ideal, and pseudo atom in a pseudo Q-algebra are introduced. Characterizations of their properties are provided.

Medium effects on the H-Atom Abstraction and Silyl-Transfer Photoreactions of Silylalkyl Ketones

  • Oh, Sun-Wha
    • Journal of Photoscience
    • /
    • v.12 no.1
    • /
    • pp.47-50
    • /
    • 2005
  • Mediumeffects have been explored on the competitive H-atom abstraction and SET-promoted, silyl-transfer reactions of excited states of silylalkyl-substituted phenyl ketones. The chemical selectivities of photochemical reactions of silylalkyl phenyl ketones appear to depend on medium polarity, medium silophilicity, added metal cation and alkyl length. Irradiations of silylalkylketones in aqueous solvent system and in presence of metal cation such as $Li^+$ and $Mg^{+2} $lead to formation of acetophenone predominantly by the sequential SET-silyl transfer route.

  • PDF

Excursion, Roaming and Migration of Hydrogen Atom during Dissociation of Formaldehyde

  • Kim, Hyung-Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1285-1293
    • /
    • 2014
  • Several interesting features in trajectory were observed in the direct dynamics study of formaldehyde dissociation above radical dissociation limit. The hydrogen atom deliberately placed on the radical dissociation path can turn around at some distance from C without completion of dissociation and return to HCO moiety, colliding with it just as in a radical-radical recombination and producing a highly energized molecule. Excursion of a hydrogen atom to a distance of 6-8 bohrs and migration of a hydrogen atom back and forth between C and O are two of the most interesting features exhibited by the energized molecule. A series of excursions is seen to lead to a different kind of dissociation resembling roaming-like dissociation characterized by high vibrational excitation of $H_2$ fragment. It is suggested that excursion occurs due to involvement of two different force field systems that exhibit discontinuity in 6-8 bohrs from HCO moiety. We argue that roaming is a non-zero impact parameter version of the excursion.

Spatiotemporal Behavior of the Excited Xe Atom Density in the $1s_5$ Metastable State According to the Hoof-type Electrode Structure in an Alternating-current Plasma Display Pane

  • Kim, Yong-Hee;Hong, Young-June;Choi, Joon-Ho;Cho, Byeong-Seong;Uhm, Han-Sub;Choi, Eun-Ha
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.149-153
    • /
    • 2010
  • To improve the luminescence characteristics of high-efficiency alternating-current plasma display panels (AC-PDPs), we developed a new hoof-type electrode structure, and we studied the spatiotemporal behavior of the density of the excited Xenon atom in the $1s_5$ metastable state via laser absorption spectroscopy. Using this structure, the maximum density of the excited Xenon atom per cell was improved by 2.4 times that when the conventional electrode structure was used.

The Wallach Rearrangement The Behaviour of Monosubstituted Azoxybenzenes in Strongly Acidic Solution (强酸溶液中에서의 Azoxybenzene 系化合物들의 轉移反應. Wallach 轉移反應)

  • Hahn, Chi-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.162-170
    • /
    • 1962
  • The rearrangement reaction of azoxybenzenes into hydroxyazobenzenes in strongly acidic solution has been studied by an U. V. spectrophotometric method and by isolation of the rearranged compound. In all cases under investigation, it appeared that the oxygen atom in the azoxy group migrated to the unsubstituted ring, depending neither on the substituent already present in the other ring, nor on the distance between the oxygen atom and the eligible position; whereas, the position in the open ring, ortho or para, to which the oxygen migrates depends on the substituent already present in the other ring. In all compounds besides ${\alpha}$-and ${\beta}$-4-methyl azoxybenzene, the oxygen atom migrates to the para position. In the case of ${\alpha}$ and ${\beta}$-4-methylazoxybenzene, the oxygen atom migrates to the ortho position of the unsubstituted ring.

  • PDF

The Reactions of O(3P) Atom with Halomethanes: Discharge Flow-Chemiluminescence Imaging Method

  • Lee, Jee-Yon;Yoo, Hee-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.291-294
    • /
    • 2002
  • The reactions of triplet oxygen atom with halomethanes as a potential fire extinguisher were studied by a discharge flow-chemiluminescence imaging method. The experiments were carried out under second order conditions. The bimolecular atom-molecule reaction rate constants were determined in terms of the initial rate method. The initial concentration of oxygen atom was also determined under second order rate law instead of the pseudo-first order conditions with $[O(^3P)]_0{\ll}[sample]_0$. The second order conditions were more reliable than pseudo-first order conditions for the determinations of rate constants. The rate constants of the reactions $CF_3I\;+\;O(^3P)$, $CH_3PI\;+\'O(^3P)$, and $CHBrCl_2\;+\;O(^3P)$ were determined to be $5.0\;{\times}\;10^{-12}$ , $1.1\;×\;0^{-11}$ , and $1.9\;{\times}\;10^{-14}cm^3molecule^{-1}s^{-1}$, respectively.

Effect of Copper Oxide on Migration and Interaction of Protons in Barium Zirconate (BaZrO3에서의 프로톤 전도와 상호작용에 대한 CuO의 영향)

  • Jeong, Yong-Chan;Kim, Dae-Hee;Kim, Byung-Kook;Kim, Yeong-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.195-199
    • /
    • 2011
  • The effect of copper oxide on migration and interaction of protons in barium zirconate was investigated using density functional theory. One copper atom was substituted for a zirconium atom site, and a proton was added to a $3{\times}3{\times}3$ barium zirconate superstructure. An energy barrier of 0.89 eV for proton migration was the highest among several energy barriers. To investigate the interaction between multiple protons and a copper atom, two protons were added to the superstructure. Various proton positions were determined by the interaction between the two protons and the copper atom.

A Brief Overview of Atom Probe Tomography Research

  • Gault, Baptiste
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.117-126
    • /
    • 2016
  • Atom probe tomography (APT) has been fast rising in prominence over the past decade as a key tool for nanoscale analytical characterization of a range of materials systems. APT provides three-dimensional mapping of the atom distribution in a small volume of solid material. The technique has evolved, with the incorporation of laser pulsing capabilities, and, combined with progress in specimen preparation, APT is now able to analyse a very range of materials, beyond metals and alloys that used to be its core applications. The present article aims to provide an overview of the technique, providing a brief historical perspective, discussing recent progress leading to the state-of-the-art, some perspectives on its evolution, with targeted examples of applications.