Browse > Article
http://dx.doi.org/10.4191/KCERS.2011.48.2.195

Effect of Copper Oxide on Migration and Interaction of Protons in Barium Zirconate  

Jeong, Yong-Chan (Department of Materials Engineering, Korea University of Technology and Education)
Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education)
Kim, Byung-Kook (High Temperature Energy Materials Center, Korea Institute of Science and Technology)
Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
Publication Information
Abstract
The effect of copper oxide on migration and interaction of protons in barium zirconate was investigated using density functional theory. One copper atom was substituted for a zirconium atom site, and a proton was added to a $3{\times}3{\times}3$ barium zirconate superstructure. An energy barrier of 0.89 eV for proton migration was the highest among several energy barriers. To investigate the interaction between multiple protons and a copper atom, two protons were added to the superstructure. Various proton positions were determined by the interaction between the two protons and the copper atom.
Keywords
Proton conductor; Barium zirconate; Sintering aid; Copper oxide; Density functional theory;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 G. Kresse and J. Furthuuller, “Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using a Plane-wave Basis Set,” Phys. Rev. B, 54 [16] 11169-86 (1996).   DOI
2 P. E. Blochl, “Projector Augmented-wave Method,” Phys. Rev. B, 50 [24] 17953-79 (1994).   DOI
3 J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., 77 [18] 3865-8 (1996).   DOI
4 H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-zone Integrations,” Phys. Rev. B, 13 [12] 5188-92 (1976).   DOI
5 D. Sheppard, R. Terrell, and G. Henkelman, “Optimization Methods for Finding Minimum Energy Paths,” J. Chem. Phys., 128 [13] 134106-15 (2008).   DOI
6 P. G. Sundell, M. E. Bjorketun, and G. Wahnstrom, “Densityfunctional Calculations of Prefactors and Activation Energies for H Diffusion in $BaZrO_3$,” Phys. Rev. B, 76 [9] 094301-7 (2007).   DOI
7 A. M. Azad, S. Subramaniam, and T. W. Dung, ‘‘On the Development of High Density Barium Metazirconate $(BaZrO_3)$ Ceramics,” J. Alloy. Compd. Soc., 334 [1-2] 118-30 (2002).   DOI
8 P. Babilo and S. M. Haile, ‘‘Enhanced Sintering of Yttriumdoped Barium Zirconate by Addition of ZnO,” J. Am. Ceram. Soc., 88 [9] 2362-68 (2005).   DOI
9 Y. J. Xing, Z. H. Xi, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Z. Q. Xue, and D. P. Yu, “Thermal Evaporation Synthesis of Zinc Oxide Nanowires,” Appl. Phys. A, 80 [7] 1527-30 (2005).   DOI
10 J. S. Park, J. H. Lee, H. W. Lee, and B. K. Kim, ‘‘Low Temperature Sintering of $BaZrO_3$-based Proton Conductors for Intermediate Temperature Solid Oxide Fuel Cells,” Solid State Ionics, 181 [3-4] 163-7 (2010).   DOI
11 M. E. Bjorketun, P. G. Sundell, and G. Wahnstrom, “Effect of Acceptor Dopants on the Proton Mobility in $BaZrO_3$: A Density Functional Investigation,” Phys. Rev. B, 76 [5] 054307-15 (2007).   DOI
12 B. Merinov and W. Goddard III, “Proton Diffusion Pathways and Rates in Y-doped $BaZrO_3$ Solid Oxide Electrolyte,” J. Chem. Phys., 130 [19] 194707-12 (2009).   DOI
13 H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, “Proton Conduction in Sintered Oxides and its Application to Steam Electrolysis for Hydrogen Production,” Solid State Ionics, 3-4 359-63 (1981).   DOI   ScienceOn
14 D. H. Kim, Y. C. Jeong, J. S. Park, B. K. Kim, and Y. C. Kim, “Transfer of Oxygen Vacancy and Proton in Y-doped $BaZrO_3$,” J. Kor. Ceram. Soc., 46 [6] 695-99 (2009).   과학기술학회마을   DOI
15 G. Kresse and J. Hafner, “Ab Initio Molecular Dynamics for Liquid Metals,” Phys. Rev. B, 47 [1] 558-61 (1993).   DOI
16 G. Kresse and J. Furthuller, “Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set,” Comput. Mat. Sci., 6 [1]15-50 (1996).   DOI
17 F. L. Joud, G. Gauthier, and J. Mougin, “Current Status of Proton-conductiong Solid Oxide Fuel Cells Development,” J. Appl. Electrochem., 39 [4] 535-43 (2009).   DOI
18 K. D. Kreuer, “Proton Conductivity: Materials and Applications,” Chem. Mater., 8 [3] 610-41 (1996).   DOI
19 K. D. Kreuer, “Aspects of the Formation and Mobility of Protonic Charge Carriers and the Stability of Perovskitetype Oxides,” Solid State Ionics, 125 [1-4] 285-302 (1999).   DOI   ScienceOn
20 K. D. Kreuer, “Proton-conducting Oxides,” Annu. Rev. Mater. Res., 33 333-59 (2003).   DOI
21 T. Schober and H. G. Bohn, “Water Vapor Solubility and Electrochemical Characterization of the High Temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O_{2.95}$,” Solid State Ionics, 127 [3-4] 351-60 (2000).   DOI
22 H. G. Bohn and T. Schober, “Electrical Conductivity of the High Temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O_{2.95}$,” J. Am. Ceram. Soc., 83 [4] 768-72 (2000).