DOI QR코드

DOI QR Code

A Brief Overview of Atom Probe Tomography Research

  • Gault, Baptiste (Department of Microstructure Physics and Alloy Design, Max-Planck-Institut fur Eisenforschung GmbH)
  • Received : 2016.09.23
  • Accepted : 2016.09.26
  • Published : 2016.09.30

Abstract

Atom probe tomography (APT) has been fast rising in prominence over the past decade as a key tool for nanoscale analytical characterization of a range of materials systems. APT provides three-dimensional mapping of the atom distribution in a small volume of solid material. The technique has evolved, with the incorporation of laser pulsing capabilities, and, combined with progress in specimen preparation, APT is now able to analyse a very range of materials, beyond metals and alloys that used to be its core applications. The present article aims to provide an overview of the technique, providing a brief historical perspective, discussing recent progress leading to the state-of-the-art, some perspectives on its evolution, with targeted examples of applications.

Keywords

References

  1. Araullo-Peters V J, Breen A, Ceguerra A V, Gault B, Ringer S P, and Cairney J M (2015) A new systematic framework for crystallographic analysis of atom probe data. Ultramicroscopy 154, 7-14. https://doi.org/10.1016/j.ultramic.2015.02.009
  2. Bas P, Bostel A, Deconihout B, and Blavette D (1995) A general protocol for the reconstruction of 3D atom probe data. Appl. Surf. Sci. 87, 298-304.
  3. Beavan L A, Scanlan R M, and Seidman D N (1971) The defect structure of depleted zones in irradiated tungsten. Acta Metall. 19, 1339-1350. https://doi.org/10.1016/0001-6160(71)90071-X
  4. Bemont E, Bostel A, Bouet M, Da Costa G, Chambreland S, Deconihout B, and Hono K (2003) Effects of incidence angles of ions on the mass resolution of an energy compensated 3D atom probe. Ultramicroscopy 95, 231-238. https://doi.org/10.1016/S0304-3991(02)00321-2
  5. Blavette D, Bostel A, Sarrau J M, Deconihout B, and Menand A (1993) An atom probe for three-dimensional tomography. Nature 363, 432-435. https://doi.org/10.1038/363432a0
  6. Blum I, Rigutti L, Vurpillot F, Vella A, Gaillard A, and Deconihout B (2016) Dissociation dynamics of molecular ions in high DC electric field. J. Phys. Chem. A 120, 3654-3662. https://doi.org/10.1021/acs.jpca.6b01791
  7. Boll T, Al-Kassab T, Yuan Y, and Liu Z G (2007) Investigation of the site occupation of atoms in pure and doped $TiAl/Ti_3Al$ intermetallic. Ultramicroscopy 107, 796-801. https://doi.org/10.1016/j.ultramic.2007.02.011
  8. Breen A J, Moody M P, Ceguerra A V, Gault B, Araullo-Peters V J, and Ringer S P (2015) Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning. Ultramicroscopy 159, 314-323. https://doi.org/10.1016/j.ultramic.2015.05.011
  9. Breen A J, Xie K Y, Moody M P, Gault B, Yen H W, Wong C C, Cairney J M, and Ringer S P (2014) Resolving the morphology of niobium carbonitride nano-precipitates in steel using atom probe tomography. Microsc. Microanal. 20, 1100-1110.
  10. Brenner S S and Goodman S R (1971) FIM-atom probe analysis of thin nitride platelets in Fe-3 at.% Mo. Scripta Metall. 5, 865-869. https://doi.org/10.1016/0036-9748(71)90060-3
  11. Bunton J, Lenz D, Olson J, Thompson K, Ulfig R, Larson D, and Kelly T (2006) Instrumentation developments in atom probe tomography: applications in semiconductor research. Microsc. Microanal. 12, 1730-1731. https://doi.org/10.1017/S1431927606065809
  12. Bunton J H, Olson J D, Lenz D R, and Kelly T F (2007) Advances in pulsedlaser atom probe: instrument and specimen design for optimum performance. Microsc. Microanal. 13, 418-427. https://doi.org/10.1017/S1431927607070869
  13. Cadel E, Vurpillot F, Larde R, Duguay S, and Deconihout B (2009) Depth resolution function of the laser assisted tomographic atom probe in the investigation of semiconductors. J. Appl. Phys. 106, 044908. https://doi.org/10.1063/1.3186617
  14. Cerezo A, Clifton P H, Gomberg A, and Smith G D W (2007a) Aspects of the performance of a femtosecond laser-pulsed 3-dimensional atom probe. Ultramicroscopy 107, 720-725. https://doi.org/10.1016/j.ultramic.2007.02.025
  15. Cerezo A, Clifton P H, Galtrey M J, Humphreys C J, Kelly T F, Larson D J, Lozano-Perez S, Marquis E A, Oliver R A, and Sha G (2007b) Atom probe tomography today. Mater. Today 10, 36-42.
  16. Cerezo A, Godfrey T J, Sijbrandij S J, Smith G D W, and Warren P J (1998) Performance of an energy-compensated three-dimensional atom probe. Rev. Sci. Instrum. 69, 49-58. https://doi.org/10.1063/1.1148477
  17. Cerezo A, Godfrey T J, and Smith G D W (1988) Application of a positionsensitive detector to atom probe microanalysis. Rev. Sci. Instrum. 59, 862-866. https://doi.org/10.1063/1.1139794
  18. Chen Y M, Ohkubo T, and Hono K (2011) Laser assisted field evaporation of oxides in atom probe analysis. Ultramicroscopy 111, 562-566. https://doi.org/10.1016/j.ultramic.2010.12.013
  19. Clifton P H, Gribb T T, Gerstl S S A, Ulfig R M, and Larson D J (2008) Performance advantages of a modern, ultra-high mass resolution atom probe. Microsc. Microanal. 14, 454-455. https://doi.org/10.1017/S1431927608087217
  20. Da Costa G, Vurpillot F, Bostel A, Bouet M, and Deconihout B (2005) Design of a delay-line position-sensitive detector with improved performance. Rev. Sci. Instrum. 76, 013304. https://doi.org/10.1063/1.1829975
  21. Dagan M, Hanna L R, Xu A, Roberts S G, Smith G D W, Gault B, Edmondson P D, Bagot P A, and Moody M P (2015) Imaging of radiation damage using complementary field ion microscopy and atom probe tomography. Ultramicroscopy 159, 387-394. https://doi.org/10.1016/j.ultramic.2015.02.017
  22. De Geuser F, Dorin T, Lefebvre W, Gault B, and Deschamps A (2014) Complementarity of atom probe, small angle scattering and differential scanning calorimetry for the study of precipitation in aluminium alloys. In: Materials Science Forum, Vol. 794, eds Marthinsen K, Holmedal B, and Li Y, pp. 926-932, (Trans Tech Publications, Pfaffikon).
  23. De Geuser F, Lefebvre W, and Blavette D (2006) 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy. Philos. Mag. Lett. 86, 227-234.
  24. Deconihout B, Vurpillot F, Gault B, Da Costa G, Bouet M, Bostel A, Blavette D, Hideur A, Martel G, and Brunel M (2007) Toward a laser assisted wide-angle tomographic atom-probe. Surf. Interface Anal. 39, 278-282. https://doi.org/10.1002/sia.2491
  25. Dempsey N M, Woodcock T G, Sepehri-Amin H, Zhang Y, Kennedy H, Givord D, Hono K, and Gutfleisch O (2013) High-coercivity Nd-Fe-B thick films without heavy rare earth additions. Acta Mater. 61, 4920-4927. https://doi.org/10.1016/j.actamat.2013.04.055
  26. Faulkner R G and Ralph B (1972) Field-ion microscopy of the early stages of γ'precipitation in a nickel-aluminium alloy. Acta Metall. 20, 703-710. https://doi.org/10.1016/0001-6160(72)90099-5
  27. Felfer P J, Alam T, Ringer S P, and Cairney J M (2012) A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces. Microsc. Res. Tech. 75, 484-491. https://doi.org/10.1002/jemt.21081
  28. Forbes R G (1995) Field evaporation theory: a review of basic ideas. Appl. Surf. Sci. 87, 1-11.
  29. Gault B, Chen Y, Moody M, Ohkubo T, Hono K, and Ringer S (2011a) Influence of the wavelength on the spatial resolution of pulsed-laser atom probe. J. Appl. Phys. 110, 094901. https://doi.org/10.1063/1.3657846
  30. Gault B, Cui X Y, Moody M P, De Geuser F, Sigli C, Ringer S P, and Deschamps A (2012) Atom probe microscopy investigation of Mg site occupancy within ${\delta}'$ precipitates in an Al-Mg-Li alloy. Scripta Mater. 66, 903-906. https://doi.org/10.1016/j.scriptamat.2012.02.021
  31. Gault B, Haley D, De Geuser F, Moody M, Marquis E, Larson D, and Geiser B (2011b) Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 111, 448-457. https://doi.org/10.1016/j.ultramic.2010.11.016
  32. Gault B, La Fontaine A, Moody M P, Ringer S P, and Marquis E A (2010a) Impact of laser pulsing on the reconstruction in an atom probe tomography. Ultramicroscopy 110, 1215-1222. https://doi.org/10.1016/j.ultramic.2010.04.017
  33. Gault B, Moody M P, De Geuser F, Haley D, Stephenson L T, and Ringer S P (2009a) Origin of the spatial resolution in atom probe microscopy. Appl. Phys. Lett. 95, 034103. https://doi.org/10.1063/1.3182351
  34. Gault B, Moody M P, De Geuser F, La Fontaine A, Stephenson L T, Haley D, and Ringer S P (2010b) Spatial resolution in atom probe tomography. Microsc. Microanal. 16, 99-110. https://doi.org/10.1017/S1431927609991267
  35. Gault B, Moody M P, de Geuser F, Tsafnat G, La Fontaine A, Stephenson L T, Haley D, and Ringer S P (2009b) Advances in the calibration of atom probe tomographic reconstruction. J. Appl. Phys. 105, 034913. https://doi.org/10.1063/1.3068197
  36. Gault B, Müller M, La Fontaine A, Moody M, Shariq A, Cerezo A, Ringer S, and Smith G (2010c) Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography. J. Appl. Phys. 108, 044904. https://doi.org/10.1063/1.3462399
  37. Gault B, Saxey D W, Ashton M W, Sinnott S B, Chiaramonti A N, Moody M P, and Schreiber D K (2016) Behavior of molecules and molecular ions near a field emitterThis work is a partial contribution of the US Government and therefore is not subject to copyright in the United States. New J. Phys. 18, 033031. https://doi.org/10.1088/1367-2630/18/3/033031
  38. Gault B, Scenini F, Moody M P, Huang J H, Botton G A, Mangelinck D, Descoins M, and Newman R C (2013) Atom Probe Characterization of Corroded Alloy 600. Microsc. Microanal. 19, 1020-1021. https://doi.org/10.1017/S1431927613007095
  39. Gault B, Vella A, Vurpillot F, Menand A, Blavette D, and Deconihout B (2007) Optical and thermal processes involved in ultrafast laser pulse interaction with a field emitter. Ultramicroscopy 107, 713-719. https://doi.org/10.1016/j.ultramic.2007.02.004
  40. Gault B, Vurpillot F, Bostel A, Menand A, and Deconihout B (2005) Estimation of the tip field enhancement on a field emitter under laser illumination. Appl. Phys. Lett. 86, 094101. https://doi.org/10.1063/1.1871342
  41. Gault B, Vurpillot F, Vella A, Gilbert M, Menand A, Blavette D, and Deconihout B (2006) Design of a femtosecond laser assisted tomographic atom probe. Rev. Sci. Instrum. 77, 043705. https://doi.org/10.1063/1.2194089
  42. Geiser B P, Kelly T F, Larson D J, Schneir J, and Roberts J P (2007) Spatial distribution maps for atom probe tomography. Microsc. Microanal. 13, 437-447. https://doi.org/10.1017/S1431927607070948
  43. Gilbert M, Vurpillot F, Vella A, Bernas H, and Deconihout B (2007) Some aspects of the silicon behaviour under femtosecond pulsed laser field evaporation. Ultramicroscopy 107, 767-772. https://doi.org/10.1016/j.ultramic.2007.02.027
  44. Gordon L M and Joester D (2011) Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature 469, 194-197. https://doi.org/10.1038/nature09686
  45. Haley D, Petersen T, Barton G, and Ringer S (2009) Influence of field evaporation on radial distribution functions in atom probe tomography. Philos. Mag. 89, 925-943. https://doi.org/10.1080/14786430902821610
  46. Hellman O C, Vandenbroucke J A, Rusing J, Isheim D, and Seidman D N (2000) Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 6, 437-444.
  47. Herbig M, Choi P, and Raabe D (2015) Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. Ultramicroscopy 153, 32-39. https://doi.org/10.1016/j.ultramic.2015.02.003
  48. Hono K, Ohkubo T, Chen Y, Kodzuka M, Oh-Ishi K, Sepehri-Amin H, Li F, Kinno T, Tomiya S, and Kanitani Y (2011) Broadening the applications of the atom probe technique by ultraviolet femtosecond laser. Ultramicroscopy 111, 576-583. https://doi.org/10.1016/j.ultramic.2010.11.020
  49. Jagutzki O, Cerezo A, Czasch A, Dorner R, Hattas M, Huang M, Mergel V, Spillmann U, Ullmann-Pfleger K, and Weber T (2002) Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans. Nucl. Sci. 49, 2477-2483. https://doi.org/10.1109/TNS.2002.803889
  50. Karahka M, Xia Y, and Kreuzer H J (2015) The mystery of missing species in atom probe tomography of composite materials. Appl. Phys. Lett. 107, 062105. https://doi.org/10.1063/1.4928625
  51. Karlsson J, Sundell G, Thuvander M, and Andersson M (2014) Atomically resolved tissue integration. Nano Lett. 14, 4220-4223. https://doi.org/10.1021/nl501564f
  52. Kellogg G L (1981) Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J. Appl. Phys. 52, 5320-5328. https://doi.org/10.1063/1.329390
  53. Kellogg G L (1982) Measurement of the charge state distribution of field evaporated ions: evidence for post-ionization. Surf. Sci. 120, 319-333. https://doi.org/10.1016/0039-6028(82)90153-4
  54. Kellogg G L and Tsong T T (1980) Pulsed-laser atom-probe field-ion microscopy. J. Appl. Phys. 51, 1184-1193. https://doi.org/10.1063/1.327686
  55. Kelly T F, Gribb T T, Olson J D, Martens R L, Shepard J D, Wiener S A, Kunicki T C, Ulfig R M, Lenz D R, and Strennen E M (2004) First data from a commercial local electrode atom probe (LEAP). Microsc. Microanal. 10, 373-383. https://doi.org/10.1017/S1431927604040565
  56. Kelly T F, Larson D J, Thompson K, Alvis R L, Bunton J H, Olson J D, and Gorman B P (2007) Atom probe tomography of electronic materials. Annu. Rev. Mater. Res. 37, 681-727. https://doi.org/10.1146/annurev.matsci.37.052506.084239
  57. Kelly T F, Vella A, Bunton J H, Houard J, Silaeva E P, Bogdanowicz J, and Vandervorst W (2014) Laser pulsing of field evaporation in atom probe tomography. Curr. Opin. Solid State Mater. Sci. 18, 81-89. https://doi.org/10.1016/j.cossms.2013.11.001
  58. Kelly T F, Voelkl E, and Geiser B P (2009) Practical determination of spatial resolution in atom probe tomography. Microsc. Microanal. 15, 12. https://doi.org/10.1017/S1431927609098717
  59. Kim J H, Kim B K, Kim D I, Choi P P, Raabe D, and Yi K W (2015) The role of grain boundaries in the initial oxidation behavior of austenitic stainless steel containing alloyed Cu at $700^{\circ}C$ for advanced thermal power plant applications. Corros. Sci. 96, 52-66. https://doi.org/10.1016/j.corsci.2015.03.014
  60. Kingham D R (1982) The post-ionization of field evaporated ions: a theoretical explanation of multiple charge states. Surf. Sci. 116, 273-301. https://doi.org/10.1016/0039-6028(82)90434-4
  61. Krug M E, Mao Z, Seidman D N, and Dunand D C (2014) Comparison between dislocation dynamics model predictions and experiments in precipitation-strengthened Al-Li-Sc alloys. Acta Mater. 79, 382-395. https://doi.org/10.1016/j.actamat.2014.06.038
  62. Kuzmina M, Herbig M, Ponge D, Sandlöbes S, and Raabe D (2015) Linear complexions: confined chemical and structural states at dislocations. Science 349, 1080-1083. https://doi.org/10.1126/science.aab2633
  63. La Fontaine A, Yen H-W, Felfer P J, Ringer S P, and Cairney J M (2015) Atom probe study of chromium oxide spinels formed during intergranular corrosion. Scripta Mater. 99, 1-4. https://doi.org/10.1016/j.scriptamat.2014.09.028
  64. La Fontaine A, Zavgorodniy A, Liu H, Zheng R, Swain M, and Cairney J (2016) Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. Sci. Adv. 2, e1601145. https://doi.org/10.1126/sciadv.1601145
  65. Larson D J, Foord D T, Petford-Long A K, Anthony T C, Rozdilsky I M, Cerezo A, and Smith G W D (1998) Focused ion-beam milling for field-ion specimen preparation:: preliminary investigations. Ultramicroscopy 75, 147-159. https://doi.org/10.1016/S0304-3991(98)00058-8
  66. Larson D J, Lawrence D, Lefebvre W, Olson D, Prosa T J, Reinhard D A, Ulfig R M, Clifton P H, Bunton J H, and Lenz D (2011a) Toward atom probe tomography of microelectronic devices. J. Phys.: Conf. Ser. Vol. 326, 012030. https://doi.org/10.1088/1742-6596/326/1/012030
  67. Larson D J, Lawrence D, Olson D, Prosa T J, Ulfig R M, Reinhard D A, Clifton P H, Kelly T F, and Lefebvre W (2011b) From the store shelf to device-level atom probe analysis: an exercise in feasibility. In: 37th International Symposium for Testing and Failure Analysis, pp. 189- 197, (ISTFA 2011, San Jose).
  68. Larson D J, Cerezo A, Juraszek J, Hono K, and Schmitz G (2009) Atomprobe tomographic studies of thin films and multilayers. MRS Bull. 34, 732-737. https://doi.org/10.1557/mrs2009.247
  69. Larson D J, Gault B, Geiser B P, De Geuser F, and Vurpillot F (2013) Atom probe tomography spatial reconstruction: status and directions. Curr. Opin. Solid State Mater. Sci. 17, 236-247. https://doi.org/10.1016/j.cossms.2013.09.002
  70. Mao Z G, Sudbrack C K, Yoon K E, Martin G, and Seidman D N (2007) The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy. Nat. Mater. 6, 210-216. https://doi.org/10.1038/nmat1845
  71. Marceau R K W, Stephenson L T, Hutchinson C R, and Ringer S P (2011) Quantitative atom probe analysis of nanostructure containing clusters and precipitates with multiple length scales. Ultramicroscopy 111, 738-742. https://doi.org/10.1016/j.ultramic.2010.12.029
  72. Marceau R K W, Gutierrez-Urrutia I, Herbig M, Moore K L, Lozano-Perez S, and Raabe D (2013) Multi-scale correlative microscopy investigation of both structure and chemistry of deformation twin bundles in Fe-Mn-C steel. Microsc. Microanal. 19, 1581-1585. https://doi.org/10.1017/S1431927613013494
  73. Marquis E A (2002) Microstructural evolution and strengthening mechanisms in Al-Sc and Al-Mg-Sc alloys, Ph.D dissertation, (Northwestern University, Evanston).
  74. Marquis E A, Bachhav M, Chen Y, Dong Y, Gordon L M, and McFarland A (2013) On the current role of atom probe tomography in materials characterization and materials science. Curr. Opin. Solid State Mater. Sci. 17, 217-223. https://doi.org/10.1016/j.cossms.2013.09.003
  75. Marquis E A and Hyde J M (2010) Applications of atom-probe tomography to the characterisation of solute behaviours. Mater. Sci. Eng. R Reports 69, 37-62. https://doi.org/10.1016/j.mser.2010.05.001
  76. Marquis E A, Hyde J M, Saxey D W, Lozano-Perez S, de Castro V, Hudson D, Williams C A, Humphry-Baker S, and Smith G D (2009a) Nuclear reactor materials at the atomic scale. Mater. Today 12, 30-37.
  77. Marquis E A, Miller M K, Blavette D, Ringer S P, Sudbrack C K, and Smith G D (2009b) Structural materials: understanding atomic-scale microstructures. MRS Bull. 34, 725-731. https://doi.org/10.1557/mrs2009.246
  78. Mazumder B, Vella A, and Déconihout B (2011) Evaporation mechanisms of MgO in laser assisted atom probe tomography. Ultramicroscopy 111, 571-575. https://doi.org/10.1016/j.ultramic.2010.11.017
  79. Meisnar M, Moody M, and Lozano-Perez S (2015) Atom probe tomography of stress corrosion crack tips in SUS316 stainless steels. Corros. Sci. 98, 661-671. https://doi.org/10.1016/j.corsci.2015.06.008
  80. Melmed A J, Sakurai T, Kuk Y, and Givargizov E I (1981) Feasibility of ToF atom-probe analysis of silicon. Surf. Sci. 103, L139-L142.
  81. Melmed A J (1991) The art and science and other aspects of making sharp tips. J. Vac. Sci. 9, 601-608. https://doi.org/10.1116/1.585467
  82. Miller M K (2000) The development of atom probe field-ion microscopy. Mater. Charact. 44, 11-27. https://doi.org/10.1016/S1044-5803(99)00053-4
  83. Miller M K and Russell K F (2006) Atom probe specimen preparation with a dual beam FIB Miller. In: 2006 19th International Vacuum Nanoelectronics Conference, pp. 147-148, (IEEE).
  84. Moody M P, Ceguerra A V, Breen A J, Cui X Y, Gault B, Stephenson L T, Marceau R K, Powles R C, and Ringer S P (2014) Atomically resolved tomography to directly inform simulations for structure-property relationships. Nat. Commun. 5.
  85. Moody M P, Gault B, Stephenson L T, Haley D, and Ringer S P (2009) Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109, 815-824. https://doi.org/10.1016/j.ultramic.2009.03.016
  86. Moody M P, Gault B, Stephenson L T, Marceau R K, Powles R C, Ceguerra A V, Breen A J, and Ringer S P (2011) Lattice rectification in atom probe tomography: toward true three-dimensional atomic microscopy. Microsc. Microanal. 17, 226-239.
  87. Moody M P, Stephenson L T, Ceguerra A V, and Ringer S P (2008) Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data. Microsc. Res. Tech. 71, 542-550. https://doi.org/10.1002/jemt.20582
  88. Moody M P, Stephenson L T, Liddicoat P V, and Ringer S P (2007) Contingency table techniques for three dimensional atom probe tomography. Microsc. Res. Tech. 70, 258-268. https://doi.org/10.1002/jemt.20412
  89. Müller E W (1956) Resolution of the atomic structure of a metal surface by the field ion microscope. J. Appl. Phys. 27, 474-476. https://doi.org/10.1063/1.1722406
  90. Muller E W and Bahadur K (1956) Field ionization of gases at a metal surface and the resolution of the field ion microscope. Phys. Rev. 102, 624. https://doi.org/10.1103/PhysRev.102.624
  91. Muller E W, Panitz J A, and McLane S B (1968) The atom-probe field ion microscope. Rev. Sci. Instrum. 39, 83-86. https://doi.org/10.1063/1.1683116
  92. Müller M, Gault B, Smith G D W, and Grovenor C R M (2011a) Accuracy of pulsed laser atom probe tomography for compound semiconductor analysis. J. Phys.: Conf. Ser. 326, 012031. https://doi.org/10.1088/1742-6596/326/1/012031
  93. Müller M, Saxey D W, Smith G D W, and Gault B (2011b) Some aspects of the field evaporation behaviour of GaSb. Ultramicroscopy 111, 487-492. https://doi.org/10.1016/j.ultramic.2010.11.019
  94. Nakamura S and Kuroda T (1978) Atom-probe fim studies of $\beta$-SiC whiskers. Surf. Sci. 70, 452-458. https://doi.org/10.1016/0039-6028(78)90425-9
  95. Nishikawa O, Ohtani Y, Maeda K, Watanabe M, and Tanaka K (2000) Development of the scanning atom probe and atomic level analysis. Mater. Charact. 44, 29-57. https://doi.org/10.1016/S1044-5803(99)00046-7
  96. Panayi P (2006) A reflectron for use in a three-dimensional atom probe. Gt. Britain Pat. # GB2426120A.
  97. Peterman E M, Reddy S M, Saxey D W, Snoeyenbos D R, Rickard W D, Fougerouse D, and Kylander-Clark A R (2016) Nanogeochronology of discordant zircon measured by atom probe microscopy of Pbenriched dislocation loops. Sci. Adv. 2, e1601318. https://doi.org/10.1126/sciadv.1601318
  98. Rigutti L, Vella A, Vurpillot F, Gaillard A, Sevelin-Radiguet N, Houard J, Hideur A, Martel G, Jacopin G, and Bugallo A D L (2013) Coupling atom probe tomography and photoluminescence spectroscopy: exploratory results and perspectives. Ultramicroscopy 132, 75-80. https://doi.org/10.1016/j.ultramic.2013.02.002
  99. Rolland N, Larson D J, Geiser B P, Duguay S, Vurpillot F, and Blavette D (2015) An analytical model accounting for tip shape evolution during atom probe analysis of heterogeneous materials. Ultramicroscopy 159, 195-201. https://doi.org/10.1016/j.ultramic.2015.03.010
  100. Schreiber D K, Olszta M J, Saxey D W, Kruska K, Moore K, Lozano-Perez S, and Bruemmer S M (2013) Examinations of oxidation and sulfidation of grain boundaries in alloy 600 exposed to simulated pressurized water reactor primary water. Microsc. Microanal. 19, 676-687.
  101. Sebastian J T, Hellman O C, and Seidman D N (2001) New method for the calibration of three-dimensional atom-probe mass spectra. Rev. Sci. Instrum. 72, 2984-2988. https://doi.org/10.1063/1.1379962
  102. Seidman D N (2007) Three-dimensional atom-probe tomography: advances and applications. Annu. Rev. Mater. Res. 37, 127-158. https://doi.org/10.1146/annurev.matsci.37.052506.084200
  103. Sha G, Yao L, Liao X, Ringer S P, Duan Z C, and Langdon T G (2011) Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy. Ultramicroscopy 111, 500-505. https://doi.org/10.1016/j.ultramic.2010.11.013
  104. Shariq A, Al-Kassab T, Kirchheim R, Safarik D J, and Schwarz R B (2006) Exploring the next neighbourhood relationship in metallic glasses utilizing the atom probe tomography. In: 2006 19th International Vacuum Nanoelectronics Conference, pp. 19-20, (IEEE).
  105. Silaeva E P, Arnoldi L, Karahka M L, Deconihout B, Menand A, Kreuzer H J, and Vella A (2014) Do dielectric nanostructures turn metallic in highelectric dc fields? Nano Lett. 14, 6066-6072. https://doi.org/10.1021/nl502715s
  106. Silaeva E P, Karahka M, and Kreuzer H J (2013) Atom probe tomography and field evaporation of insulators and semiconductors: theoretical issues. Curr. Opin. Solid State Mater. Sci. 17, 211-216. https://doi.org/10.1016/j.cossms.2013.08.001
  107. Stephenson L T, Moody M P, Gault B, and Ringer S P (2013) Nearest neighbour diagnostic statistics on the accuracy of APT solute cluster characterisation. Philos. Mag. 93, 975-989. https://doi.org/10.1080/14786435.2012.738941
  108. Stephenson L T, Moody M P, Liddicoat P V, and Ringer S P (2007) New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc. Microanal. 13, 448-463. https://doi.org/10.1017/S1431927607070900
  109. Stoian R, Ashkenasi D, Rosenfeld A, and Campbell E E B (2000) Coulomb explosion in ultrashort pulsed laser ablation of $Al_2O_3$. Phys. Rev. B 62, 13167. https://doi.org/10.1103/PhysRevB.62.13167
  110. Suram S K and Rajan K (2013) Calibration of reconstruction parameters in atom probe tomography using a single crystallographic orientation. Ultramicroscopy 132, 136-142. https://doi.org/10.1016/j.ultramic.2013.02.013
  111. Thompson K, Lawrence D, Larson D J, Olson J D, Kelly T F, and Gorman B (2007) In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131-139. https://doi.org/10.1016/j.ultramic.2006.06.008
  112. Tsong T T and Kinkus T J (1984) Energy distributions of pulsed-laser fielddesorbed gaseous ions and field-evaporated metal ions: a direct time-of-flight measurement. Phys. Rev. B 29, 529.
  113. Tsong T T, McLane S B, and Kinkus T J (1982) Pulsed-laser time-of-flight atom-probe field ion microscope. Rev. Sci. Instrum. 53, 1442-1448. https://doi.org/10.1063/1.1137193
  114. Uman E, Colonna-Dashwood M, Colonna-Dashwood L, Perger M, Klatt C, Leighton S, Miller B, Butler K T, Melot B C, Speirs R W, and Hendon C H (2016) The effect of bean origin and temperature on grinding roasted coffee. Sci. Rep. 6, 24483. https://doi.org/10.1038/srep24483
  115. Valley J W, Cavosie A J, Ushikubo T, Reinhard D A, Lawrence D F, Larson D J, Clifton P H, Kelly T F, Wilde S A, and Moser D E (2014) Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat. Geosci. 7, 219-223. https://doi.org/10.1038/ngeo2075
  116. Vella A, Deconihout B, Marrucci L, and Santamato E (2007) Femtosecond field ion emission by surface optical rectification. Phys. Rev. Lett. 99, 046103. https://doi.org/10.1103/PhysRevLett.99.046103
  117. Vella A, Vurpillot F, Gault B, Menand A, and Deconihout B (2006) Evidence of field evaporation assisted by nonlinear optical rectification induced by ultrafast laser. Phys. Rev. B 73, 165416. https://doi.org/10.1103/PhysRevB.73.165416
  118. Vurpillot F, Da Costa G, Menand A, and Blavette D (2001) Structural analyses in three-dimensional atom probe: a Fourier transform approach. J. Microsc. 203, 295-302. https://doi.org/10.1046/j.1365-2818.2001.00923.x
  119. Vurpillot F, De Geuser F, Da Costa G, and Blavette D (2004) Application of Fourier transform and autocorrelation to cluster identification in the three-dimensional atom probe. J. Microsc. 216, 234-240. https://doi.org/10.1111/j.0022-2720.2004.01413.x
  120. Vurpillot F, Gault B, Geiser B P, and Larson D J (2013) Reconstructing atom probe data: a review. Ultramicroscopy 132, 19-30. https://doi.org/10.1016/j.ultramic.2013.03.010
  121. Vurpillot F, Houard J, Vella A, and Deconihout B (2009) Thermal response of a field emitter subjected to ultra-fast laser illumination. J. Phys. D-Applied Phys. 42, 125502. https://doi.org/10.1088/0022-3727/42/12/125502
  122. Walls J M, Southworth H N, and Rushton G J (1974) The preparation of field electron/field-ion emitters by ion etching. Vacuum 24, 475-479. https://doi.org/10.1016/0042-207X(74)90009-8
  123. Waugh A R, Payne S, Worrall G M, and Smith G D W (1984) In situ ion milling of field ion specimens using a liquid metal ion source. J. Phys. Colloq. 45, C9-207-C9-209.
  124. Wilde J, Cerezo A, and Smith G D W (2000) Three-dimensional atomicscale mapping of a cottrell atmosphere around a dislocation in iron. Scripta Mater. 43, 39-48. https://doi.org/10.1016/S1359-6462(00)00361-4
  125. Yao L, Moody M P, Cairney J M, Haley D, Ceguerra A V, Zhu C, and Ringer S P (2011) Crystallographic structural analysis in atom probe microscopy via 3D Hough transformation. Ultramicroscopy 111, 458-463. https://doi.org/10.1016/j.ultramic.2010.11.018

Cited by

  1. Fabrication of Atom Probe Tomography Specimens from Nanoparticles Using a Fusible Bi–In–Sn Alloy as an Embedding Medium pp.1435-8115, 2019, https://doi.org/10.1017/S1431927618015556