KYUNGPOOK Math. J. 56(2016), 95-106 http://dx.doi.org/10.5666/KMJ.2016.56.1.95 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Structures of Pseudo Ideal and Pseudo Atom in a Pseudo Q-Algebra

YOUNG BAE JUN Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea e-mail: skywine@gmail.com

HEE SIK KIM Department of Mathematics, Hanyang University, Seoul 04763, Korea e-mail: heekim@hanyang.ac.kr

SUN SHIN AHN* Department of Mathematics Education, Dongguk University, Seoul 04620, Korea e-mail: sunshine@dongguk.edu

ABSTRACT. As a generalization of Q-algebra, the notion of pseudo Q-algebra is introduced, and some of their properties are investigated. The notions of pseudo subalgebra, pseudo ideal, and pseudo atom in a pseudo Q-algebra are introduced. Characterizations of their properties are provided.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: a BCK-algebra and a BCI-algebra ([7,8]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. Q. P. Hu and X. Li [5,6] introduced a wide class of abstract algebra: a BCH-algebra. They have shown that the class of BCI-algebra is a proper subclass of the class of BCH-algebra. BCK-algebras have several connections with other areas of investigation, such as: lattice ordered groups, MV-algebras, Wajsberg algebras, and implicative commutative semigroups. J. M. Font et al. [3] have discussed Wajsberg algebras are categorically equivalent to MV-algebras. D. Mundici [13] proved MV-algebras are categorically equivalent to bounded commutative BCK-algebra, and J. Meng [11] proved that implicative com-

^{*} Corresponding Author.

Received December 19, 2014; accepted February 5, 2016.

²⁰¹⁰ Mathematics Subject Classification: 06F35, 03G25.

Key words and phrases: pseudo atom, pseudo subalgebra, pseudo ideal, pseudo Q-algebra.

⁹⁵

mutative semigroups are equivalent to a class of BCK-algebras. G. Georgescu and A. Iorgulescu [4] introduced the notion of a pseudo BCK-algebra. Y. B. Jun characterized pseudo BCK-algebras. He found conditions for a pseudo BCK-algebra to be \wedge -semi-lattice ordered. Y. B. Jun, H.S. Kim, J. Neggers [9] introduced the notion of a pseudo *d*-algebra as a generalization of the idea of a *d*-algebra. J. Neggers, S. S. Ahn and H. S. Kim ([14]) introduced a new notion, called a *Q*-algebra, which is a generalization of BCH/BCI/BCK-algebra, and generalized some theorems discussed in a BCI-algebra.

In this paper, we introduce the notion of pseudo Q-algebra as a generalization of Q-algebra and investigate some of their properties. We also define the notions of pseudo subalgebra, pseudo ideal, and pseudo atom in a pseudo Q-algebra and provide characterizations of their properties in a pseudo Q-algebra.

2. Preliminaries

A *Q*-algebra ([14]) is a non-empty set X with a constant 0 and a binary operation " *" satisfying axioms:

- $(\mathbf{I}) \qquad x * x = 0,$
- (II) x * 0 = x,
- (III) (x * y) * z = (x * z) * y

for all $x, y, z \in X$.

For brevity we also call X a Q-algebra. In X we can define a binary relation " \leq " by $x \leq y$ if and only if x * y = 0.

In a Q-algebra X the following property holds:

(IV)
$$(x * (x * y)) * y = 0$$
, for any $x, y \in X$.

A BCK-algebra is a Q-algebra X satisfying the additional axioms:

- (V) ((x * y) * (x * z)) * (z * y) = 0,
- (VI) x * y = 0 and y * x = 0 imply x = y,
- $(\text{VII}) \qquad 0 * x = 0,$

for all $x, y, z \in X$.

Definition 2.1.([14]) Let (X; *, 0) be a *Q*-algebra and $\emptyset \neq I \subset X$. *I* is called a *subalgebra* of *X* if

(S) $x * y \in I$ whenever $x \in I$ and $y \in I$.

I is called an *ideal* of X if it satisfies:

 $(Q_0) \qquad 0 \in I,$

 (Q_1) $x * y \in I$ and $y \in I$ imply $x \in I$.

A Q-algebra X is called a QS-algebra ([1]) if it satisfies the following identity:

$$(x * y) * (x * z) = z * y,$$
 for any $x, y, z \in X$.

Example 2.2.([1]) Let \mathbb{Z} be the set of all integers and let $n\mathbb{Z} := \{nz | z \in \mathbb{Z}\}$, where $n \in \mathbb{Z}$. Then $(\mathbb{Z}; -, 0)$ and $(n\mathbb{Z}; -, 0)$ are both Q-algebras and QS-algebras, where "-" is the usual subtraction of integers. Also, $(\mathbb{R}; -, 0)$ and $(\mathbb{C}; -, 0)$ are Q-algebras and QS-algebras where \mathbb{R} is the set of all real numbers, \mathbb{C} is the set of all complex numbers.

Example 2.3. (1) Let $X = \{0, 1, 2\}$ be a set with the table as follows:

Then X is a Q-algebra, but not a QS/BCI-algebra, since $(2*0)*(2*1) = 2 \neq 1 = 1*0$.

(2) Let $X = \{0, 1, 2\}$ be a set with the table as follows:

*	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Then X is both a Q-algebra and QS-algebra.

(3) Let $X = \{0, 1, 2\}$ be a set with the table as follows:

Then X is both a Q-algebra and BCI-algebra , but not a QS-algebra, since $(0 * 1) * (0 * 2) = 0 \neq 1 = 2 * 1$.

3. Pseudo Ideal

In the following, let X denote a pseudo Q-algebra unless otherwise specified.

Definition 3.1. A *pseudo* Q-algebra is a non-empty set X with a constant 0 and two binary operations "*" and " \diamond " satisfying the following axioms: for any $x, y, z \in X$,

(P1)
$$x * x = x \diamond x = 0$$
;

 $(P2) \quad x * 0 = x = x \diamond 0;$

(P3) $(x * y) \diamond z = (x \diamond z) * y.$

For brevity, we also call X a pseudo *BCH*-algebra. In X we can define a binary operation " \leq " by $x \leq y$ if and only if x * y = 0 if and only if $x \diamond y = 0$. Note that if (X; *, 0) is a Q-algebra, then letting $x \diamond y := x * y$, produces a pseudo Q-algebra $(X; *, \diamond, 0)$. Hence every Q-algebra is a pseudo Q-algebra in a natural way.

Definition 3.2. Let $(X; *, \diamond, 0)$ be a pseudo Q-algebra and let $\emptyset \neq I \subseteq X$. I is called a *pseudo subalgebra* of X if $x * y, x \diamond y \in I$ whenever $x, y \in I$. I is called a *pseudo ideal* of X if it satisfies

- (PI1) $0 \in I;$
- (PI2) $x * y, x \diamond y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$.

Example 3.3. Let $X := \{0, a, b, c\}$ be a set with the following Cayley tables:

*	0	a	b	\mathbf{c}	\diamond	0	a	b	c
0	0	0	0	0	0	0	0	0	0
a	а	0	0	0	a	a	0	0	0
b	b	b	0	\mathbf{a}	b	b	\mathbf{c}	$\begin{array}{c} 0 \\ 0 \end{array}$	\mathbf{c}
с	с	\mathbf{c}	0	0	с	c	\mathbf{c}	0	0

Then (X; *, 0) and $(X; \diamond, 0)$ are not Q-algebras, since $(b * a) * c = a \neq 0 = (b * c) * a$ and $(b \diamond a) \diamond c = 0 \neq c = (b \diamond c) \diamond a$. It is easy to check that $(X; *, \diamond, 0)$ is a pseudo Q-algebra. Let $I := \{0, a\}$. Then I is both a pseudo subalgebra of X and a pseudo ideal of X. Let $J := \{0, a, c\}$. Then J is a pseudo subalgebra of X, but it is not a pseudo ideal of X since $b \diamond c = c \in J$ and $b * c = a \in J$, but $b \notin J$.

Proposition 3.4. Let I be a pseudo ideal of a pseudo Q-algebra X. If $x \in I$ and $y \leq x$, then $y \in I$.

Proof. Assume that $x \in I$ and $y \preceq x$. Then y * x = 0 and $y \diamond x = 0$. By (PI1) and (PI2), we have $y \in I$.

Proposition 3.5. If X is a pseudo Q-algebra satisfying a * b = a * c and $a \diamond b = a \diamond c$ for all $a, b, c \in X$, then 0 * b = 0 * c and $0 \diamond b = 0 \diamond c$.

Proof. For any $a, b, c \in X$, we have

$$0*b = (a \diamond a)*b = (a*b) \diamond a = (a*c) \diamond a = (a \diamond a)*c = 0*c$$

and

$$0 \diamond b = (a \ast a) \diamond b = (a \diamond b) \ast a = (a \diamond c) \ast a = (a \ast a) \diamond c = 0 \diamond c$$

This concludes the proof.

Proposition 3.6. Let $(X; *, \diamond, 0)$ be a pseudo *Q*-algebra. Then the following hold: for all $x, y, z \in X$.

(i)
$$x * (x \diamond y) \preceq y, x \diamond (x * y) \preceq y,$$

98

- (ii) $x * y \preceq z \Leftrightarrow x \diamond z \preceq y$,
- (iii) $0 * (x * y) = (0 \diamond x) \diamond (0 * y),$
- (iv) $0 \diamond (x \diamond y) = (0 \ast x) \ast (0 \diamond y),$
- (v) $0 * x = 0 \diamond x$.

Proof. (i) By (P1) and (P3), we obtain $[x * (x \diamond y)] \diamond y = (x \diamond y) * (x \diamond y) = 0$ and $[x \diamond (x * y)] * y = (x * y) \diamond (x * y) = 0$. Hence $x * (x \diamond y) \preceq y$ and $x * (x \diamond y) \preceq y$. (ii) $x * y \preceq z \Leftrightarrow (x * y) \diamond z = 0 \Leftrightarrow (x \diamond z) * y = 0 \Leftrightarrow x \diamond z \preceq y$. (iii) and (iv) For any $x, y \in X$, by (P1) and (P3) we have

$$\begin{aligned} (0 \diamond x) \diamond (0 * y) &= [((x * y) * (x * y)) \diamond x] \diamond (0 * y) \\ &= [((x * y) \diamond x) * (x * y)] \diamond (0 * y) \\ &= [((x \diamond x) * y) * (x * y)] \diamond (0 * y) \\ &= [(0 * y) \diamond (0 * y)] * (x * y) \\ &= 0 * (x * y) \end{aligned}$$

and

$$\begin{aligned} (0*x)*(0\diamond y) &= [((x\diamond y)*(x\diamond y))*x]*(0\diamond y) \\ &= [((x\diamond y)*x)*(x\diamond y)]*(0\diamond y) \\ &= [((x*x)\diamond y)\diamond (x\diamond y)]*(0\diamond y) \\ &= [(0\diamond y)*(0\diamond y)]\diamond (x\diamond y) \\ &= 0\diamond (x\diamond y). \end{aligned}$$

(v) For any $x \in X$, by (P1) and (P3) we obtain $0 * x = (x \diamond x) * x = (x * x) \diamond x = 0 \diamond x.\Box$

Theorem 3.7. For any pseudo Q-algebra X, the set

$$K(X) := \{ x \in X | 0 \preceq x \}$$

is a pseudo subalgebra of X.

Proof. Let $x, y \in K(X)$. Then $0 \leq x$ and $0 \leq y$. Hence $0 * x = 0 \diamond x = 0$ and $0 * y = 0 \diamond y = 0$. Since $0 * (x * y) = (0 \diamond x) \diamond (0 * y) = 0 \diamond 0 = 0$ and $0 \diamond (x \diamond y) = (0 * x) * (0 \diamond y) = 0 * 0 = 0$, we have $x * y, x \diamond y \in K(X)$. Thus K(X) is a pseudo subalgebra of X. \Box

Theorem 3.8. If I is a pseudo ideal of a pseudo Q-algebra X, then

- (i) $\forall x, y, z \in X, x, y \in I, z * y \preceq x \Rightarrow z \in I$,
- (ii) $\forall a, b, c \in X, a, b \in I, c \diamond b \preceq a \Rightarrow c \in I.$

Proof. (i) Suppose that I is a pseudo ideal of X and let $x, y, z \in X$ be such that $x, y \in I$ and $z * y \preceq x$. Then $(z * y) \diamond x = 0 \in I$. Since $x \in I$ and I is a pseudo ideal

of X, we have $z * y \in I$. Since $y \in I$ and I is a pseudo ideal of X, we obtain $z \in I$. Thus (i) is valid.

(ii) Let $a, b, c \in X$ be such that $a, b \in I$ and $c \diamond b \preceq a$. Then $(c \diamond b) * a = 0 \in I$ and so $c \diamond b \in I$. Since $b \in I$ and I is a pseudo ideal of X, we have $c \in I$. Thus (ii) is true.

Theorem 3.9. Let *I* be a pseudo subalgebra of a pseudo *Q*-algebra *X*. Then *I* is a pseudo ideal of *X* if and only if $\forall x, y \in X, x \in I, y \in X - I \Rightarrow y * x \in X - I$ and $y \diamond x \in X - I$.

Proof. Assume that I is a pseudo ideal of X and let $x, y \in X$ be such that $x \in I$ and $y \in X - I$. If $y * x \notin X - I$, then $y * x \in I$. Since I is a pseudo ideal of X, we have $y \in I$. This is a contradiction. Hence $y * x \in X - I$. Now if $y \diamond x \notin X - I$, then $y \diamond x \in I$ and so $y \in I$. This is a contradiction, and therefore $y \diamond x \in X - I$.

Conversely, assume that $\forall x, y \in X, x \in I, y \in X - I \Rightarrow y * x \in X - I$ and $y \diamond x \in X - I$. Since I is a pseudo subalgebra, we have $0 \in I$. Let $x \in I, y \in X$ such that $y * x, y \diamond x \in I$. If $y \notin I$, then $y * x, y \diamond x \in X - I$ by assumption. This is a contradiction. Hence $y \in I$. Thus I is a pseudo ideal of X.

Proposition 3.10. Let A be a pseudo ideal of a pseudo Q-algebra X. If B is a pseudo ideal of A, then it is a pseudo ideal of X.

Proof. Since B is a pseudo ideal of A, we have $0 \in B$. Let $y, x * y, x \diamond y \in B$ for some $x \in X$. If $x \in A$, then $x \in B$ since B is a pseudo ideal of A. If $x \in X - A$, then $y, x * y, x \diamond y \in B \subseteq A$ and so $x \in A$ because A is a pseudo ideal of X. Thus $x \in B$ since B is a pseudo ideal of A. This competes the proof. \Box

Proposition 3.11. Let I be a pseudo ideal of a pseudo Q-algebra X. Then

 $(\forall x \in X)(x \in I \Rightarrow 0 * (0 \diamond x) \in I \text{ and } 0 \diamond (0 * x) \in I).$

Proof. Let $x \in I$. Then

$$0 = (0 \diamond x) \ast (0 \diamond x) = (0 \ast (0 \diamond x)) \diamond x$$

and

$$0 = (0 * x) \diamond (0 * x) = (0 \diamond (0 * x)) * x$$

which imply that $0 * (0 \diamond x), 0 \diamond (0 * x) \in I$. This completes the proof.

Theorem 3.12. Let I be a pseudo ideal of a pseudo Q-algebra X and let

$$I^{\#} := \{ x \in X | 0 * (0 \diamond x), 0 \diamond (0 * x) \in I \}.$$

Then $I^{\#}$ is a pseudo ideal of X and $I \subseteq I^{\#}$.

Proof. Obviously, $0 \in I^{\#}$. Let $a \in X, y \in I^{\#}$ such that $a * y, a \diamond y \in I^{\#}$. Then

100

 $0 * (0 \diamond (a * y)), 0 \diamond (0 * (a * y)), 0 * (0 \diamond (a \diamond y)) \in I$, and $0 \diamond (0 * (a \diamond y)) \in I$. Using Proposition 3.6 (iii) and (iv), we have

$$(0 * (0 \diamond a)) * (0 \diamond (0 * y)) = 0 \diamond ((0 \diamond a) \diamond (0 * y))$$

= 0 \lapha (0 * (a * y)) \ie I

and

$$\begin{aligned} (0\diamond(0\ast a))\diamond(0\ast(0\diamond y)) = &0\ast((0\ast a)\ast(0\diamond y)) \\ = &0\ast(0\diamond(a\diamond y))\in I. \end{aligned}$$

Since $0 * (0 \diamond y), 0 \diamond (0 * y) \in I$, it follows from (PI2) that $0 * (0 \diamond a), 0 \diamond (0 * a) \in I$. Hence $a \in I^{\#}$. Thus $I^{\#}$ is a pseudo ideal of X. By Proposition 3.11, we know that $I \subseteq I^{\#}$. This completes the proof. \Box

Let X be a pseudo Q-algebra. For any non-empty subset S of X, we define

$$G(S) := \{ x \in S | 0 \ast x = x = 0 \diamond x \}.$$

In particular, if S = X then we say that G(X) is the G-part of X.

Proposition 3.13. If X is a pseudo Q-algebra, then a left cancellation law holds in G(X).

Proof. Let $x, y, z \in G(X)$ satisfy x * y = x * z and $x \diamond y = x \diamond z$. By Proposition 3.5, we have 0 * y = 0 * z and $0 \diamond y = 0 \diamond z$. Since $y, z \in G(X)$, it follows that y = z. \Box

Proposition 3.14. Let X be a pseudo Q-algebra. Then $x \in G(X)$ if and only if $0 * x \in G(X)$ and $0 \diamond x \in G(X)$.

Proof. If $x \in G(X)$, then $0 * x = x = 0 \diamond x$ and 0 * (0 * x) = 0 * x and $0 \diamond (0 \diamond x) = 0 \diamond x$. Hence $0 * x \in G(X)$ and $0 \diamond x \in G(X)$. Conversely, assume that $0 * x \in G(X)$ and $0 \diamond x \in G(X)$. Then 0 * (0 * x) = 0 * x and $0 \diamond (0 \diamond x) = 0 \diamond x$. By applying Proposition 3.13, we obtain $0 * x = x = 0 \diamond x$. Therefore $x \in G(X)$. \Box

Proposition 3.15. Let X be a pseudo Q-algebra. If $x, y \in G(X)$, then $x * y = y \diamond x$.

Proof. If $x, y \in G(X)$, then $0 * x = x = 0 \diamond x$ and $0 * y = y = 0 \diamond y$. Using (P3), we have

$$x * y = (0 \diamond x) * (0 \diamond y) = (0 * (0 \diamond y)) \diamond x = (0 * y) \diamond x = y \diamond x$$

This completes the proof.

Theorem 3.16. If a pseudo *Q*-algebra *X* satisfies $x*(x \diamond y) = x*y$ or $x \diamond (x*y) = x \diamond y$ for all $x, y \in X$, then it is a trivial algebra.

Proof. Assume that X satisfies $x * (x \diamond y) = x * y$ for all $x, y \in X$. Putting x = y in the equation $x * (x \diamond y) = x * y$, we obtain

$$x = x * 0 = x * (x \diamond x) = x * x = 0.$$

Concerning the other case, the argument is similar. Hence X is a trivial algebra. \Box

Theorem 3.17. Let X be a pseudo Q-algebra such that

(3.1)
$$x * (y \diamond z) = (x * y) \diamond z \text{ (resp., } x \diamond (y * z) = (x \diamond y) * z)$$

for all $x, y, z \in X$. Then X is a group under operation \diamond (resp.*).

Proof. Putting x = y = z in (3.1) and using (P1) and (P2), we obtain $x = x * 0 = 0 \diamond x$ (resp., $x = x \diamond 0 = 0 * x$). This means that 0 is the zero element of X with respect to the operation \diamond (resp., *). Since $x \diamond x = 0 = x * x$, we know that the inverse of x is itself with respect to the operation \diamond (resp., *). Hence X is a group under operation \diamond (resp., *).

Definition 3.18. A Pseudo Q-algebra X is said to be \diamond -medial if it satisfies the following identity

(M1)
$$(x*y)\diamond(z*u) = (x*z)\diamond(y*u), \forall x, y, z, u \in X.$$

Proposition 3.19. Every \diamond -medial pseudo *Q*-algebra *X* satisfies the following identities: for any $x, y \in X$

- (i) $x * y = 0 \diamond (y * x)$,
- (ii) $0 \diamond (0 \ast x) = x$,
- (iii) $x \diamond (x * y) = y$.

Proof. (i) For any $x, y \in X$, we have $x * y = (x * y) \diamond 0 = (x * y) \diamond (x * x) = (x * x) \diamond (y * x) = 0 \diamond (y * x)$. (ii) If we put y = 0 in (i), then we have (ii).

(ii) Using (ii), (P1) and (P2), we have $x \diamond (x * y) = (x * 0) \diamond (x * y) = (x * x) \diamond (0 * y) = 0 \diamond (0 * y) = y$.

4. Pseudo Atom

Definition 4.1. An element *a* of a pseudo *Q*-algebra *X* is called a *pseudo atom* of *X* if for every $x \in X$, $x \preceq a$ implies x = a.

Obviously, 0 is a pseudo atom of X. Let L(X) denote the set of all pseudo atoms of X, we call it the *center* of X.

Theorem 4.2. Let X be a pseudo Q-algebra. Then the following are equivalent: for all $x, y, z, w, u \in X$

- (i) w is a pseudo atom,
- (ii) $w = x \diamond (x \ast w)$ and $w = x \ast (x \diamond w)$
- (iii) $(x * y) \diamond (x * w) = w * y$ and $(x \diamond y) * (x \diamond w) = w \diamond y$
- (iv) $w * (x \diamond y) = y \diamond (x * w)$ and $w \diamond (x * y) = y * (x \diamond w)$,

103

- (v) $0 \diamond (y * w) = w * y$ and $0 * (y \diamond w) = w \diamond y$,
- (vi) $0 \diamond (0 \ast w) = w$ and $0 \ast (0 \diamond w) = w$,

(vii)
$$0 \diamond (0 \ast (w \diamond z)) = w \diamond z$$
 and $0 \ast (0 \diamond (w \ast z)) = w \ast z$

(viii) $z \diamond (z \ast (w \diamond u)) = w \diamond u$ and $z \ast (z \diamond (w \ast u)) = w \ast u$.

Proof. (i) \Rightarrow (ii): Let w be a pseudo atom of X. Since $x \diamond (x * w) \preceq w$ and $x * (x \diamond w) \preceq w$ by Proposition 3.6 (i), we have $w = x \diamond (x * w)$ and $w = x * (x \diamond w)$. (ii) \Rightarrow (iii): For every $x \in X$, we obtain $(x * y) \diamond (x * w) = (x \diamond (x * w)) * y = w * y$ and $(x \diamond y) * (x \diamond w) = (x * (x \diamond w)) \diamond y = w \diamond y$ by (P3) and (ii). (iii) \Rightarrow (iv): Replacing y by $x \diamond y$ in (iii), we get

$$w * (x \diamond y) = (x * (x \diamond y)) \diamond (x * w)$$
$$= (x \diamond (x * w)) * (x \diamond y)$$
$$= y \diamond (x * w)$$

and

$$\begin{split} w \diamond (x * y) =& (x \diamond (x * y)) * (x \diamond w) \\ =& (x * (x \diamond w)) \diamond (x * y) \\ =& y * (x \diamond w). \end{split}$$

(iv) \Rightarrow (v): Put y := 0 in (iv). Then $w * (x \diamond 0) = 0 \diamond (x * w)$ and $w \diamond (x * 0) = 0 * (x \diamond w)$. Hence $w * x = 0 \diamond (x * w)$ and $w \diamond x = 0 * (x \diamond w)$ by (P2). (v) \Rightarrow (vi): Set y := 0 in (v). Then $0 \diamond (0 * w) = w * 0 = w$ and $0 * (0 \diamond w) = w \diamond 0 = w$. (vi) \Rightarrow (vii): For any $w, z \in X$, we have

$$\begin{array}{l} 0 \diamond (0 \ast (w \diamond z)) = 0 \ast (0 \ast (w \diamond z)) \\ = 0 \ast (0 \diamond (w \diamond z)) \\ = 0 \ast [(0 \ast w) \ast (0 \diamond z)] \\ = (0 \diamond (0 \ast w)) \diamond (0 \ast (0 \diamond z)) \\ = w \diamond z \end{array}$$

and

$$\begin{array}{l} 0*(0\diamond(w*z)) = & 0*(0*(w*z)) \\ = & 0*[(0\diamond w)\diamond(0*z)] \\ = & 0\diamond[(0\diamond w)\diamond(0*z)] \\ = & (0*(0\diamond w))*(0\diamond(0*z)) \\ = & w*z. \end{array}$$

(vii) \Rightarrow (viii): For any $u, w, z \in X$, we have

$$\begin{split} w \diamond u =& 0 \diamond (0 * (w \diamond u)) \\ =& 0 \diamond ((z \diamond z) * (w \diamond u)) \\ =& 0 \diamond [((z * (w \diamond u)) \diamond z] \\ =& (0 * (z * (w \diamond u))) * (0 \diamond z) \\ =& (0 \diamond (z * (w \diamond u))) * (0 \diamond z) \\ =& (0 \diamond (z * (w \diamond u))) * (0 \diamond z) \\ =& (0 * (0 \diamond (z \diamond 0))) \diamond (z * (w \diamond u)) \\ =& (0 * (0 \diamond (z \diamond 0))) \diamond (z * (w \diamond u)) \\ =& (z \diamond 0) \diamond (z * (w \diamond u)) \\ =& (z \diamond 0) \diamond (z * (w \diamond u)) \\ =& z \diamond (z * (w \diamond u)). \end{split}$$

By a similar way, we obtain $z * (z \diamond (w * u)) = w * u$.

 $(\text{viii}) \Rightarrow (\text{i})$: If $z * x = z \diamond x = 0$, then by (viii) we have $x = x * 0 = z * (z \diamond (x * 0)) = z * (z \diamond x) = z * 0 = z$. This shows that z is a pseudo atom of X. This completes the proof.

Corollary 4.3. Let X be a pseudo Q-algebra. If a is a pseudo atom of X, then for all x of X, a * x and $a \diamond x$ are pseudo atoms. Hence L(X) is a pseudo subalgebra of X.

Corollary 4.4. Let X be a pseudo Q-algebra. For every x of X, there is a pseudo atom a such that $a \preceq x$, i.e., every pseudo Q-algebra is generated by a pseudo atom.

Proposition 4.5. A non-zero element $a \in X$ is a pseudo atom of a pseudo Q-algebra X if $\{0, a\}$ is a pseudo ideal of X.

Proof. Let $x \leq a$ for any $x \in X$. Then $x * a = x \diamond a = 0 \in \{0, a\}$. Since $x \in \{0, a\}$ is a pseudo ideal of X, we have x = 0 or x = a. Since $a \neq 0$, we obtain x = a. Hence a is a pseudo atom of X.

Proposition 4.6. If non-zero element of a pseudo Q-algebra X is a pseudo atom, then any pseudo subalgebra of X is a pseudo ideal of X.

Proof. Let S be a pseudo subalgebra of X and let $x, y * x, y \diamond x \in S$. By Theorem 4.2, we have $y = x * (x \diamond y) = x * (0 * (y \diamond x))$. Since $0, y \diamond x \in S$ and S is a pseudo subalgebra of X, we obtain $0 * (y \diamond x) \in S$. Hence $y = x * (0 * (y \diamond x)) \in S$. Thus any pseudo subalgebra of X is a pseudo ideal of X.

For pseudo atom a of a Pseudo Q-algebra X,

$$V(a) := \{ x \in X | a \preceq x \}$$

is called a *pseudo branch* of X.

Theorem 4.7. Let X be a pseudo Q-algebra. Suppose that a and b are pseudo atoms of X. Then the following properties hold:

- (i) For all $x \in V(a)$ and all $y \in V(b)$, $x * y \in V(a * b)$ and $x \diamond y \in V(a \diamond b)$.
- (ii) For all x and $y \in V(a)$, $x \diamond y$, $x \ast y \in K(X)$, where $K(X) = \{x \in X | 0 \leq x\}$.
- (iii) If $a \neq b$, then for all $x \in V(a)$ and $y \in V(b)$, we have $x * y, x \diamond y \in K(X)$.
- (iv) For all $x \in V(b)$, a * x = a * b and $a \diamond x = a \diamond b$.
- (v) If $a \neq b$, then $V(a) \cap V(b) = \emptyset$.

Proof. (i) For all $x \in V(a)$ and all $y \in V(b),$ by Proposition 3.6 and Theorem 4.2 we have

$$\begin{split} (a*b) \diamond (x*y) = & [0*(0\diamond (a*b))] \diamond (x*y) \\ = & (0\diamond (x*y))*(0\diamond (a*b)) \\ = & (0\diamond (x*y))*(0\diamond (a*b)) \\ = & ((0\diamond (a*y))*(0\diamond (a*b))) \\ = & ((0\diamond (a \diamond (a*b))) \diamond (0\diamond (a*b))) \\ = & ((a*b)\diamond x)\diamond (0*y) \\ = & ((a \diamond b)\diamond x)\diamond (0*y) \\ = & ((a \diamond x)*b)\diamond (0*y) \\ = & (0 \diamond b)\diamond (0*y) \\ = & (0\diamond b)\diamond (0*y) \\ = & (0\diamond b)\diamond (0*y) \\ = & 0 \diamond (b*y) = 0*0 = 0 \end{split}$$

and

$$\begin{split} (a \diamond b) * (x \diamond y) = & [0 \diamond (0 * (a \diamond b))] * (x \diamond y) \\ = & (0 * (x \diamond y)) \diamond (0 * (a \diamond b)) \\ = & (0 \diamond (x \diamond y)) \diamond (0 \diamond (a \diamond b)) \\ = & ((0 \diamond (x \diamond y)) \diamond (0 \diamond (a \diamond b))) \\ = & ((0 \diamond (0 \diamond (a \diamond b))) * x) \ast (0 \diamond y) \\ = & ((0 \diamond (0 \ast (a \diamond b))) * x) \ast (0 \diamond y) \\ = & ((a \diamond b) * x) \ast (0 \diamond y) \\ = & ((a \ast x) \diamond b) \ast (0 \diamond y) \\ = & (0 \diamond b) \ast (0 \diamond y) \\ = & (0 \ast b) \ast (0 \diamond y) \\ = & (0 \ast b) \ast (0 \diamond y) \\ = & 0 \diamond (b \diamond y) = 0 \diamond 0 = 0. \end{split}$$

Hence $x * y \in V(a * b)$ and $x \diamond y \in V(a \diamond b)$.

(ii) and (iii) are simple consequences of (i). (iv) For all $x \in V(b)$, by Theorem 4.2 we have $(a*x)\diamond(a*b) = (a\diamond(a*b))*x = b*x = 0$.

Moreover, a * b is a pseudo atom by Corollary 4.3. Therefore a * x = a * b. Also we

get $(a \diamond x) * (a \diamond b) = (a * (a \diamond b)) * x = b * x = 0$. Moreover, $a \diamond b$ is a pseudo atom by Corollary 4.3. Therefore $a \diamond x = a \diamond b$.

(v) Let $a \neq b$ and $V(a) \cap V(b) \neq \emptyset$. Then there exists $c \in V(a) \cap V(b)$. By (i), we have $0 = c * c = c \diamond c \in V(a * b), V(a \diamond b)$. Hence $a * b = a \diamond b = 0$, which is a contradiction. Thus (v) is true.

References

- S. S. Ahn and H. S. Kim, On QS-algebras, J. Chungcheong. Math. Soc., 12(1999), 33–41.
- [2] M. A. Chaudhry, On BCH-algebras, Math. Japon., 4(1991), 665–676.
- [3] J. M. Font, A. J. Rodr´gez and A. Torrens, Wajsbergs Algebras, Stochastica, 8(1984), 5–31.
- [4] G. Georgescu and A. Iorgulescu, Pseudo BCK-algebras, in: Proc. DMTS'01: Combinatorics, Computability and Logics, Springer, London, 2001, 97–114.
- [5] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes, 11(1983), 313–320.
- [6] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japon., 30(1985), 659-661.
- [7] K. Iséki, On BCI-algebras, Math. Seminar Notes, 8(1980), 125–130.
- [8] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon., 23(1978), 1–26.
- [9] Y. B. Jun, H. S. Kim and J. Neggers, On pseudo d-algebras, Inform. Sci., 179(2009), 1751–1759.
- [10] Y. B. Jun, Characterizations of pseudo BCK-algebras, Sci. Math. Japon. Online, 7(2002), 225–230.
- [11] J. Meng, Implicative commutative semigroups are equivalent to a class of BCKalgebras, Semigroup Forum, 50(1995), 89–96.
- [12] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Seoul, 1994.
- [13] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCKalgebras, Math. Japon., 31(1986), 889–894.
- [14] J. Neggers, S. S. Ahn and H. S. Kim, On Q-algebras, Inter. J. Math. and Math. Sci., 27(2001), 749–757.
- [15] E. H. Roh and S. Y. Kim, On BH*-subalgebras of transitive BH*-algebras, Far East J. Math. Sci., 1(1999), 255-263.