Structures of Pseudo Ideal and Pseudo Atom in a Pseudo Q Algebra

Young Bae Jun
Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea
e-mail: skywine@gmail.com

Hee Sik Kim
Department of Mathematics, Hanyang University, Seoul 04763, Korea
e-mail: heekim@hanyang.ac.kr
Sun Shin Ahn*
Department of Mathematics Education, Dongguk University, Seoul 04620, Korea
e-mail: sunshine@dongguk.edu
Abstract. As a generalization of Q-algebra, the notion of pseudo Q-algebra is introduced, and some of their properties are investigated. The notions of pseudo subalgebra, pseudo ideal, and pseudo atom in a pseudo Q-algebra are introduced. Characterizations of their properties are provided.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: a $B C K$ algebra and a $B C I$-algebra $([7,8])$. It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. Q. P. Hu and X. Li $[5,6]$ introduced a wide class of abstract algebra: a $B C H$-algebra. They have shown that the class of $B C I$-algebra is a proper subclass of the class of $B C H$-algebra. $B C K$-algebras have several connections with other areas of investigation, such as: lattice ordered groups, $M V$-algebras, Wajsberg algebras, and implicative commutative semigroups. J. M. Font et al. [3] have discussed Wajsberg algebras which are term-equivalent to $M V$-algebras. D. Mundici [13] proved $M V$-algebras are categorically equivalent to bounded commutative $B C K$-algebra, and J. Meng [11] proved that implicative com-

[^0]mutative semigroups are equivalent to a class of $B C K$-algebras. G. Georgescu and A. Iorgulescu [4] introduced the notion of a pseudo $B C K$-algebra. Y. B. Jun characterized pseudo $B C K$-algebras. He found conditions for a pseudo $B C K$-algebra to be \wedge-semi-lattice ordered. Y. B. Jun, H.S. Kim, J. Neggers [9] introduced the notion of a pseudo d-algebra as a generalization of the idea of a d-algebra. J. Neggers, S. S. Ahn and H. S. Kim ([14]) introduced a new notion, called a Q-algebra, which is a generalization of $B C H / B C I / B C K$-algebra, and generalized some theorems discussed in a $B C I$-algebra.

In this paper, we introduce the notion of pseudo Q-algebra as a generalization of Q-algebra and investigate some of their properties. We also define the notions of pseudo subalgebra, pseudo ideal, and pseudo atom in a pseudo Q-algebra and provide characterizations of their properties in a pseudo Q-algebra.

2. Preliminaries

A Q-algebra ([14]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying axioms:
(I) $\quad x * x=0$,
(II) $\quad x * 0=x$,
(III) $\quad(x * y) * z=(x * z) * y$
for all $x, y, z \in X$.
For brevity we also call X a Q-algebra. In X we can define a binary relation $" \leq "$ by $x \leq y$ if and only if $x * y=0$.

In a Q-algebra X the following property holds:

$$
\begin{equation*}
(x *(x * y)) * y=0, \text { for any } x, y \in X \tag{IV}
\end{equation*}
$$

A $B C K$-algebra is a Q-algebra X satisfying the additional axioms:

$$
\begin{equation*}
((x * y) *(x * z)) *(z * y)=0 \tag{V}
\end{equation*}
$$

(VI) $\quad x * y=0$ and $y * x=0$ imply $x=y$,

$$
\begin{equation*}
0 * x=0, \tag{VII}
\end{equation*}
$$

for all $x, y, z \in X$.
Definition 2.1.([14]) Let $(X ; *, 0)$ be a Q-algebra and $\emptyset \neq I \subset X . I$ is called a subalgebra of X if
(S) $\quad x * y \in I$ whenever $x \in I$ and $y \in I$.
I is called an ideal of X if it satisfies:
$\left(Q_{0}\right) \quad 0 \in I$,
$\left(Q_{1}\right) \quad x * y \in I$ and $y \in I$ imply $x \in I$.
A Q-algebra X is called a $Q S$-algebra ([1]) if it satisfies the following identity:

$$
(x * y) *(x * z)=z * y, \quad \text { for any } x, y, z \in X
$$

Example 2.2.([1]) Let \mathbb{Z} be the set of all integers and let $n \mathbb{Z}:=\{n z \mid z \in \mathbb{Z}\}$, where $n \in \mathbb{Z}$. Then $(\mathbb{Z} ;-, 0)$ and $(n \mathbb{Z} ;-, 0)$ are both Q-algebras and $Q S$-algebras, where "-" is the usual subtraction of integers. Also, $(\mathbb{R} ;-, 0)$ and $(\mathbb{C} ;-, 0)$ are Q-algebras and $Q S$-algebras where \mathbb{R} is the set of all real numbers, \mathbb{C} is the set of all complex numbers.

Example 2.3. (1) Let $X=\{0,1,2\}$ be a set with the table as follows:

$$
\begin{array}{l|lll}
* & 0 & 1 & 2 \\
\hline 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & 2 & 0 & 0
\end{array}
$$

Then X is a Q-algebra, but not a $Q S / B C I$-algebra, since $(2 * 0) *(2 * 1)=2 \neq 1=$ $1 * 0$.
(2) Let $X=\{0,1,2\}$ be a set with the table as follows:

$*$	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Then X is both a Q-algebra and $Q S$-algebra.
(3) Let $X=\{0,1,2\}$ be a set with the table as follows:

$*$	0	1	2
0	0	0	0
1	1	0	0
2	2	1	0

Then X is both a Q-algebra and $B C I$-algebra, but not a $Q S$-algebra, since $(0 *$ 1) $*(0 * 2)=0 \neq 1=2 * 1$.

3. Pseudo Ideal

In the following, let X denote a pseudo Q-algebra unless otherwise specified.
Definition 3.1. A pseudo Q-algebra is a non-empty set X with a constant 0 and two binary operations "*" and " \diamond " satisfying the following axioms: for any $x, y, z \in X$,
(P1) $x * x=x \diamond x=0$;
(P2) $x * 0=x=x \diamond 0 ;$
(P3) $(x * y) \diamond z=(x \diamond z) * y$.
For brevity, we also call X a pseudo $B C H$-algebra. In X we can define a binary operation " \preceq " by $x \preceq y$ if and only if $x * y=0$ if and only if $x \diamond y=0$. Note that if $(X ; *, 0)$ is a Q-algebra, then letting $x \diamond y:=x * y$, produces a pseudo Q-algebra $(X ; *, \diamond, 0)$. Hence every Q-algebra is a pseudo Q-algebra in a natural way.

Definition 3.2. Let $(X ; *, \diamond, 0)$ be a pseudo Q-algebra and let $\emptyset \neq I \subseteq X$. I is called a pseudo subalgebra of X if $x * y, x \diamond y \in I$ whenever $x, y \in I . I$ is called a pseudo ideal of X if it satisfies
(PI1) $0 \in I$;
(PI2) $x * y, x \diamond y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$.
Example 3.3. Let $X:=\{0, a, b, c\}$ be a set with the following Cayley tables:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	0
b	b	b	0	a
c	c	c	0	0

\diamond	0	a	b	c
0	0	0	0	0
a	a	0	0	0
b	b	c	0	c
c	c	c	0	0

Then $(X ; *, 0)$ and $(X ; \diamond, 0)$ are not Q-algebras, since $(b * a) * c=a \neq 0=(b * c) * a$ and $(b \diamond a) \diamond c=0 \neq c=(b \diamond c) \diamond a$. It is easy to check that $(X ; *, \diamond, 0)$ is a pseudo Q-algebra. Let $I:=\{0, a\}$. Then I is both a pseudo subalgebra of X and a pseudo ideal of X. Let $J:=\{0, a, c\}$. Then J is a pseudo subalgebra of X, but it is not a pseudo ideal of X since $b \diamond c=c \in J$ and $b * c=a \in J$, but $b \notin J$.

Proposition 3.4. Let I be a pseudo ideal of a pseudo Q-algebra X. If $x \in I$ and $y \preceq x$, then $y \in I$.
Proof. Assume that $x \in I$ and $y \preceq x$. Then $y * x=0$ and $y \diamond x=0$. By (PI1) and (PI2), we have $y \in I$.

Proposition 3.5. If X is a pseudo Q-algebra satisfying $a * b=a * c$ and $a \diamond b=a \diamond c$ for all $a, b, c \in X$, then $0 * b=0 * c$ and $0 \diamond b=0 \diamond c$.
Proof. For any $a, b, c \in X$, we have

$$
0 * b=(a \diamond a) * b=(a * b) \diamond a=(a * c) \diamond a=(a \diamond a) * c=0 * c
$$

and

$$
0 \diamond b=(a * a) \diamond b=(a \diamond b) * a=(a \diamond c) * a=(a * a) \diamond c=0 \diamond c .
$$

This concludes the proof.
Proposition 3.6. Let $(X ; *, \diamond, 0)$ be a pseudo Q-algebra. Then the following hold: for all $x, y, z \in X$.
(i) $x *(x \diamond y) \preceq y, x \diamond(x * y) \preceq y$,
(ii) $x * y \preceq z \Leftrightarrow x \diamond z \preceq y$,
(iii) $0 *(x * y)=(0 \diamond x) \diamond(0 * y)$,
(iv) $0 \diamond(x \diamond y)=(0 * x) *(0 \diamond y)$,
(v) $0 * x=0 \diamond x$.

Proof. (i) By (P1) and (P3), we obtain $[x *(x \diamond y)] \diamond y=(x \diamond y) *(x \diamond y)=0$ and $[x \diamond(x * y)] * y=(x * y) \diamond(x * y)=0$. Hence $x *(x \diamond y) \preceq y$ and $x *(x \diamond y) \preceq y$.
(ii) $x * y \preceq z \Leftrightarrow(x * y) \diamond z=0 \Leftrightarrow(x \diamond z) * y=0 \Leftrightarrow x \diamond z \preceq y$.
(iii) and (iv) For any $x, y \in X$, by (P1) and (P3) we have

$$
\begin{aligned}
(0 \diamond x) \diamond(0 * y) & =[((x * y) *(x * y)) \diamond x] \diamond(0 * y) \\
& =[((x * y) \diamond x) *(x * y)] \diamond(0 * y) \\
& =[((x \diamond x) * y) *(x * y)] \diamond(0 * y) \\
& =[(0 * y) \diamond(0 * y)] *(x * y) \\
& =0 *(x * y)
\end{aligned}
$$

and

$$
\begin{aligned}
(0 * x) *(0 \diamond y) & =[((x \diamond y) *(x \diamond y)) * x] *(0 \diamond y) \\
& =[((x \diamond y) * x) *(x \diamond y)] *(0 \diamond y) \\
& =[((x * x) \diamond y) \diamond(x \diamond y)] *(0 \diamond y) \\
& =[(0 \diamond y) *(0 \diamond y)] \diamond(x \diamond y) \\
& =0 \diamond(x \diamond y) .
\end{aligned}
$$

(v) For any $x \in X$, by (P1) and (P3) we obtain $0 * x=(x \diamond x) * x=(x * x) \diamond x=0 \diamond x$. \square

Theorem 3.7. For any pseudo Q-algebra X, the set

$$
K(X):=\{x \in X \mid 0 \preceq x\}
$$

is a pseudo subalgebra of X.
Proof. Let $x, y \in K(X)$. Then $0 \preceq x$ and $0 \preceq y$. Hence $0 * x=0 \diamond x=0$ and $0 * y=0 \diamond y=0$. Since $0 *(x * y)=(0 \diamond x) \diamond(0 * y)=0 \diamond 0=0$ and $0 \diamond(x \diamond y)=(0 * x) *(0 \diamond y)=0 * 0=0$, we have $x * y, x \diamond y \in K(X)$. Thus $K(X)$ is a pseudo subalgebra of X.
Theorem 3.8. If I is a pseudo ideal of a pseudo Q-algebra X, then
(i) $\forall x, y, z \in X, x, y \in I, z * y \preceq x \Rightarrow z \in I$,
(ii) $\forall a, b, c \in X, a, b \in I, c \diamond b \preceq a \Rightarrow c \in I$.

Proof. (i) Suppose that I is a pseudo ideal of X and let $x, y, z \in X$ be such that $x, y \in I$ and $z * y \preceq x$. Then $(z * y) \diamond x=0 \in I$. Since $x \in I$ and I is a pseudo ideal
of X, we have $z * y \in I$. Since $y \in I$ and I is a pseudo ideal of X, we obtain $z \in I$. Thus (i) is valid.
(ii) Let $a, b, c \in X$ be such that $a, b \in I$ and $c \diamond b \preceq a$. Then $(c \diamond b) * a=0 \in I$ and so $c \diamond b \in I$. Since $b \in I$ and I is a pseudo ideal of X, we have $c \in I$. Thus (ii) is true.

Theorem 3.9. Let I be a pseudo subalgebra of a pseudo Q-algebra X. Then I is a pseudo ideal of X if and only if $\forall x, y \in X, x \in I, y \in X-I \Rightarrow y * x \in X-I$ and $y \diamond x \in X-I$.
Proof. Assume that I is a pseudo ideal of X and let $x, y \in X$ be such that $x \in I$ and $y \in X-I$. If $y * x \notin X-I$, then $y * x \in I$. Since I is a pseudo ideal of X, we have $y \in I$. This is a contradiction. Hence $y * x \in X-I$. Now if $y \diamond x \notin X-I$, then $y \diamond x \in I$ and so $y \in I$. This is a contradiction, and therefore $y \diamond x \in X-I$.

Conversely, assume that $\forall x, y \in X, x \in I, y \in X-I \Rightarrow y * x \in X-I$ and $y \diamond x \in X-I$. Since I is a pseudo subalgebra, we have $0 \in I$. Let $x \in I, y \in X$ such that $y * x, y \diamond x \in I$. If $y \notin I$, then $y * x, y \diamond x \in X-I$ by assumption. This is a contradiction. Hence $y \in I$. Thus I is a pseudo ideal of X.

Proposition 3.10. Let A be a pseudo ideal of a pseudo Q-algebra X. If B is a pseudo ideal of A, then it is a pseudo ideal of X.
Proof. Since B is a pseudo ideal of A, we have $0 \in B$. Let $y, x * y, x \diamond y \in B$ for some $x \in X$. If $x \in A$, then $x \in B$ since B is a pseudo ideal of A. If $x \in X-A$, then $y, x * y, x \diamond y \in B \subseteq A$ and so $x \in A$ because A is a pseudo ideal of X. Thus $x \in B$ since B is a pseudo ideal of A. This competes the proof.
Proposition 3.11. Let I be a pseudo ideal of a pseudo Q-algebra X. Then

$$
(\forall x \in X)(x \in I \Rightarrow 0 *(0 \diamond x) \in I \text { and } 0 \diamond(0 * x) \in I)
$$

Proof. Let $x \in I$. Then

$$
0=(0 \diamond x) *(0 \diamond x)=(0 *(0 \diamond x)) \diamond x
$$

and

$$
0=(0 * x) \diamond(0 * x)=(0 \diamond(0 * x)) * x
$$

which imply that $0 *(0 \diamond x), 0 \diamond(0 * x) \in I$. This completes the proof.
Theorem 3.12. Let I be a pseudo ideal of a pseudo Q-algebra X and let

$$
I^{\#}:=\{x \in X \mid 0 *(0 \diamond x), 0 \diamond(0 * x) \in I\}
$$

Then $I^{\#}$ is a pseudo ideal of X and $I \subseteq I^{\#}$.
Proof. Obviously, $0 \in I^{\#}$. Let $a \in X, y \in I^{\#}$ such that $a * y, a \diamond y \in I^{\#}$. Then
$0 *(0 \diamond(a * y)), 0 \diamond(0 *(a * y)), 0 *(0 \diamond(a \diamond y)) \in I$, and $0 \diamond(0 *(a \diamond y)) \in I$. Using Proposition 3.6 (iii) and (iv), we have

$$
\begin{aligned}
(0 *(0 \diamond a)) *(0 \diamond(0 * y)) & =0 \diamond((0 \diamond a) \diamond(0 * y)) \\
& =0 \diamond(0 *(a * y)) \in I
\end{aligned}
$$

and

$$
\begin{aligned}
(0 \diamond(0 * a)) \diamond(0 *(0 \diamond y)) & =0 *((0 * a) *(0 \diamond y)) \\
& =0 *(0 \diamond(a \diamond y)) \in I .
\end{aligned}
$$

Since $0 *(0 \diamond y), 0 \diamond(0 * y) \in I$, it follows from (PI2) that $0 *(0 \diamond a), 0 \diamond(0 * a) \in I$. Hence $a \in I^{\#}$. Thus $I^{\#}$ is a pseudo ideal of X. By Proposition 3.11, we know that $I \subseteq I^{\#}$. This completes the proof.

Let X be a pseudo Q-algebra. For any non-empty subset S of X, we define

$$
G(S):=\{x \in S \mid 0 * x=x=0 \diamond x\}
$$

In particular, if $S=X$ then we say that $G(X)$ is the G-part of X.
Proposition 3.13. If X is a pseudo Q-algebra, then a left cancellation law holds in $G(X)$.
Proof. Let $x, y, z \in G(X)$ satisfy $x * y=x * z$ and $x \diamond y=x \diamond z$. By Proposition 3.5, we have $0 * y=0 * z$ and $0 \diamond y=0 \diamond z$. Since $y, z \in G(X)$, it follows that $y=z$.
Proposition 3.14. Let X be a pseudo Q-algebra. Then $x \in G(X)$ if and only if $0 * x \in G(X)$ and $0 \diamond x \in G(X)$.
Proof. If $x \in G(X)$, then $0 * x=x=0 \diamond x$ and $0 *(0 * x)=0 * x$ and $0 \diamond(0 \diamond x)=0 \diamond x$. Hence $0 * x \in G(X)$ and $0 \diamond x \in G(X)$. Conversely, assume that $0 * x \in G(X)$ and $0 \diamond x \in G(X)$. Then $0 *(0 * x)=0 * x$ and $0 \diamond(0 \diamond x)=0 \diamond x$. By applying Proposition 3.13, we obtain $0 * x=x=0 \diamond x$. Therefore $x \in G(X)$.

Proposition 3.15. Let X be a pseudo Q-algebra. If $x, y \in G(X)$, then $x * y=y \diamond x$.

Proof. If $x, y \in G(X)$, then $0 * x=x=0 \diamond x$ and $0 * y=y=0 \diamond y$. Using (P3), we have

$$
x * y=(0 \diamond x) *(0 \diamond y)=(0 *(0 \diamond y)) \diamond x=(0 * y) \diamond x=y \diamond x .
$$

This completes the proof.
Theorem 3.16. If a pseudo Q-algebra X satisfies $x *(x \diamond y)=x * y$ or $x \diamond(x * y)=x \diamond y$ for all $x, y \in X$, then it is a trivial algebra.
Proof. Assume that X satisfies $x *(x \diamond y)=x * y$ for all $x, y \in X$. Putting $x=y$ in the equation $x *(x \diamond y)=x * y$, we obtain

$$
x=x * 0=x *(x \diamond x)=x * x=0 .
$$

Concerning the other case, the argument is similar. Hence X is a trivial algebra.
Theorem 3.17. Let X be a pseudo Q-algebra such that

$$
\begin{equation*}
x *(y \diamond z)=(x * y) \diamond z(\text { resp., } x \diamond(y * z)=(x \diamond y) * z) \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in X$. Then X is a group under operation $\diamond($ resp.*).
Proof. Putting $x=y=z$ in (3.1) and using (P1) and (P2), we obtain $x=x * 0=$ $0 \diamond x$ (resp., $x=x \diamond 0=0 * x)$. This means that 0 is the zero element of X with respect to the operation $\diamond($ resp., $*)$. Since $x \diamond x=0=x * x$, we know that the inverse of x is itself with respect to the operation $\diamond($ resp., $*)$. Hence X is a group under operation $\diamond($ resp., $*)$.
Definition 3.18. A Pseudo Q-algebra X is said to be \diamond-medial if it satisfies the following identity

$$
\begin{equation*}
(x * y) \diamond(z * u)=(x * z) \diamond(y * u), \forall x, y, z, u \in X \tag{M1}
\end{equation*}
$$

Proposition 3.19. Every \diamond-medial pseudo Q-algebra X satisfies the following identities: for any $x, y \in X$
(i) $x * y=0 \diamond(y * x)$,
(ii) $0 \diamond(0 * x)=x$,
(iii) $x \diamond(x * y)=y$.

Proof. (i) For any $x, y \in X$, we have $x * y=(x * y) \diamond 0=(x * y) \diamond(x * x)=$ $(x * x) \diamond(y * x)=0 \diamond(y * x)$.
(ii) If we put $y=0$ in (i), then we have (ii).
(iii) Using (ii), (P1) and (P2), we have $x \diamond(x * y)=(x * 0) \diamond(x * y)=(x * x) \diamond(0 * y)=$ $0 \diamond(0 * y)=y$.

4. Pseudo Atom

Definition 4.1. An element a of a pseudo Q-algebra X is called a pseudo atom of X if for every $x \in X, x \preceq a$ implies $x=a$.

Obviously, 0 is a pseudo atom of X. Let $L(X)$ denote the set of all pseudo atoms of X, we call it the center of X.

Theorem 4.2. Let X be a pseudo Q-algebra. Then the following are equivalent: for all $x, y, z, w, u \in X$
(i) w is a pseudo atom,
(ii) $w=x \diamond(x * w)$ and $w=x *(x \diamond w)$
(iii) $(x * y) \diamond(x * w)=w * y$ and $(x \diamond y) *(x \diamond w)=w \diamond y$
(iv) $w *(x \diamond y)=y \diamond(x * w)$ and $w \diamond(x * y)=y *(x \diamond w)$,
(v) $0 \diamond(y * w)=w * y$ and $0 *(y \diamond w)=w \diamond y$,
(vi) $0 \diamond(0 * w)=w$ and $0 *(0 \diamond w)=w$,
$($ vii) $0 \diamond(0 *(w \diamond z))=w \diamond z$ and $0 *(0 \diamond(w * z))=w * z$,
(viii) $z \diamond(z *(w \diamond u))=w \diamond u$ and $z *(z \diamond(w * u))=w * u$.

Proof. (i) \Rightarrow (ii): Let w be a pseudo atom of X. Since $x \diamond(x * w) \preceq w$ and $x *(x \diamond w) \preceq w$ by Proposition 3.6 (i), we have $w=x \diamond(x * w)$ and $w=x *(x \diamond w)$.
(ii) \Rightarrow (iii): For every $x \in X$, we obtain $(x * y) \diamond(x * w)=(x \diamond(x * w)) * y=w * y$ and $(x \diamond y) *(x \diamond w)=(x *(x \diamond w)) \diamond y=w \diamond y$ by (P3) and (ii).
(iii) \Rightarrow (iv): Replacing y by $x \diamond y$ in (iii), we get

$$
\begin{aligned}
w *(x \diamond y) & =(x *(x \diamond y)) \diamond(x * w) \\
& =(x \diamond(x * w)) *(x \diamond y) \\
& =y \diamond(x * w)
\end{aligned}
$$

and

$$
\begin{aligned}
w \diamond(x * y) & =(x \diamond(x * y)) *(x \diamond w) \\
& =(x *(x \diamond w)) \diamond(x * y) \\
& =y *(x \diamond w) .
\end{aligned}
$$

$($ iv $) \Rightarrow(\mathrm{v}):$ Put $y:=0$ in (iv). Then $w *(x \diamond 0)=0 \diamond(x * w)$ and $w \diamond(x * 0)=0 *(x \diamond w)$. Hence $w * x=0 \diamond(x * w)$ and $w \diamond x=0 *(x \diamond w)$ by (P2).
$(\mathrm{v}) \Rightarrow(\mathrm{vi})$: Set $y:=0$ in (v). Then $0 \diamond(0 * w)=w * 0=w$ and $0 *(0 \diamond w)=w \diamond 0=w$. (vi) \Rightarrow (vii): For any $w, z \in X$, we have

$$
\begin{aligned}
0 \diamond(0 *(w \diamond z)) & =0 *(0 *(w \diamond z)) \\
& =0 *(0 \diamond(w \diamond z)) \\
& =0 *[(0 * w) *(0 \diamond z)] \\
& =(0 \diamond(0 * w)) \diamond(0 *(0 \diamond z)) \\
& =w \diamond z
\end{aligned}
$$

and

$$
\begin{aligned}
0 *(0 \diamond(w * z)) & =0 *(0 *(w * z)) \\
& =0 *[(0 \diamond w) \diamond(0 * z)] \\
& =0 \diamond[(0 \diamond w) \diamond(0 * z)] \\
& =(0 *(0 \diamond w)) *(0 \diamond(0 * z)) \\
& =w * z .
\end{aligned}
$$

(vii) \Rightarrow (viii): For any $u, w, z \in X$, we have

$$
\begin{aligned}
w \diamond u & =0 \diamond(0 *(w \diamond u)) \\
& =0 \diamond((z \diamond z) *(w \diamond u)) \\
& =0 \diamond[((z *(w \diamond u)) \diamond z] \\
& =(0 *(z *(w \diamond u))) *(0 \diamond z) \\
& =(0 \diamond(z *(w \diamond u))) *(0 \diamond z) \\
& =(0 *(0 \diamond z)) \diamond(z *(w \diamond u)) \\
& =(0 *(0 \diamond(z \diamond 0))) \diamond(z *(w \diamond u)) \\
& =(0 \diamond(0 *(z \diamond 0))) \diamond(z *(w \diamond u)) \\
& =(z \diamond 0) \diamond(z *(w \diamond u)) \\
& =z \diamond(z *(w \diamond u)) .
\end{aligned}
$$

By a similar way, we obtain $z *(z \diamond(w * u))=w * u$.
(viii) \Rightarrow (i): If $z * x=z \diamond x=0$, then by (viii) we have $x=x * 0=z *(z \diamond(x * 0))=$ $z *(z \diamond x)=z * 0=z$. This shows that z is a pseudo atom of X. This completes the proof.
Corollary 4.3. Let X be a pseudo Q-algebra. If a is a pseudo atom of X, then for all x of $X, a * x$ and $a \diamond x$ are pseudo atoms. Hence $L(X)$ is a pseudo subalgebra of X.

Corollary 4.4. Let X be a pseudo Q-algebra. For every x of X, there is a pseudo atom a such that $a \preceq x$, i.e., every pseudo Q-algebra is generated by a pseudo atom.
Proposition 4.5. A non-zero element $a \in X$ is a pseudo atom of a pseudo Q algebra X if $\{0, a\}$ is a pseudo ideal of X.
Proof. Let $x \preceq a$ for any $x \in X$. Then $x * a=x \diamond a=0 \in\{0, a\}$. Since $x \in\{0, a\}$ is a pseudo ideal of X, we have $x=0$ or $x=a$. Since $a \neq 0$, we obtain $x=a$. Hence a is a pseudo atom of X.
Proposition 4.6. If non-zero element of a pseudo Q-algebra X is a pseudo atom, then any pseudo subalgebra of X is a pseudo ideal of X.
Proof. Let S be a pseudo subalgebra of X and let $x, y * x, y \diamond x \in S$. By Theorem 4.2, we have $y=x *(x \diamond y)=x *(0 *(y \diamond x))$. Since $0, y \diamond x \in S$ and S is a pseudo subalgebra of X, we obtain $0 *(y \diamond x) \in S$. Hence $y=x *(0 *(y \diamond x)) \in S$. Thus any pseudo subalgebra of X is a pseudo ideal of X.

For pseudo atom a of a Pseudo Q-algebra X,

$$
V(a):=\{x \in X \mid a \preceq x\}
$$

is called a pseudo branch of X.
Theorem 4.7. Let X be a pseudo Q-algebra. Suppose that a and b are pseudo atoms of X. Then the following properties hold:
(i) For all $x \in V(a)$ and all $y \in V(b), x * y \in V(a * b)$ and $x \diamond y \in V(a \diamond b)$.
(ii) For all x and $y \in V(a), x \diamond y, x * y \in K(X)$, where $K(X)=\{x \in X \mid 0 \preceq x\}$.
(iii) If $a \neq b$, then for all $x \in V(a)$ and $y \in V(b)$, we have $x * y, x \diamond y \in K(X)$.
(iv) For all $x \in V(b), a * x=a * b$ and $a \diamond x=a \diamond b$.
(v) If $a \neq b$, then $V(a) \cap V(b)=\emptyset$.

Proof. (i) For all $x \in V(a)$ and all $y \in V(b)$, by Proposition 3.6 and Theorem 4.2 we have

$$
\begin{aligned}
(a * b) \diamond(x * y) & =[0 *(0 \diamond(a * b))] \diamond(x * y) \\
& =(0 \diamond(x * y)) *(0 \diamond(a * b)) \\
& =(0 *(x * y)) *(0 \diamond(a * b)) \\
& =((0 \diamond x) \diamond(0 * y)) *(0 \diamond(a * b)) \\
& =((0 *(0 \diamond(a * b))) \diamond x) \diamond(0 * y) \\
& =((a * b) \diamond x) \diamond(0 * y) \\
& =((a \diamond x) * b) \diamond(0 * y) \\
& =(0 * b) \diamond(0 * y) \\
& =(0 \diamond b \diamond(0 * y) \\
& =0 *(b * y)=0 * 0=0
\end{aligned}
$$

and

$$
\begin{aligned}
(a \diamond b) *(x \diamond y) & =[0 \diamond(0 *(a \diamond b))] *(x \diamond y) \\
& =(0 *(x \diamond y)) \diamond(0 *(a \diamond b)) \\
& =(0 \diamond(x \diamond y)) \diamond(0 \diamond(a \diamond b)) \\
& =((0 * x) *(0 \diamond y)) \diamond(0 \diamond(a \diamond b)) \\
& =((0 \diamond(0 \diamond(a \diamond b))) * x) *(0 \diamond y) \\
& =((0 \diamond(0 *(a \diamond b))) * x) *(0 \diamond y) \\
& =((a \diamond b) * x) *(0 \diamond y) \\
& =((a * x) \diamond b) *(0 \diamond y) \\
& =(0 \diamond b) *(0 \diamond y) \\
& =(0 * b) *(0 \diamond y) \\
& =0 \diamond(b \diamond y)=0 \diamond 0=0 .
\end{aligned}
$$

Hence $x * y \in V(a * b)$ and $x \diamond y \in V(a \diamond b)$.
(ii) and (iii) are simple consequences of (i).
(iv) For all $x \in V(b)$, by Theorem 4.2 we have $(a * x) \diamond(a * b)=(a \diamond(a * b)) * x=b * x=0$. Moreover, $a * b$ is a pseudo atom by Corollary 4.3. Therefore $a * x=a * b$. Also we
get $(a \diamond x) *(a \diamond b)=(a *(a \diamond b)) * x=b * x=0$. Moreover, $a \diamond b$ is a pseudo atom by Corollary 4.3. Therefore $a \diamond x=a \diamond b$.
(v) Let $a \neq b$ and $V(a) \cap V(b) \neq \emptyset$. Then there exists $c \in V(a) \cap V(b)$. By (i), we have $0=c * c=c \diamond c \in V(a * b), V(a \diamond b)$. Hence $a * b=a \diamond b=0$, which is a contradiction. Thus (v) is true.

References

[1] S. S. Ahn and H. S. Kim, On QS-algebras, J. Chungcheong. Math. Soc., 12(1999), 33-41.
[2] M. A. Chaudhry, On BCH-algebras, Math. Japon., 4(1991), 665-676.
[3] J. M. Font, A. J. Rodŕgez and A. Torrens, Wajsbergs Algebras, Stochastica, 8(1984), 5-31.
[4] G. Georgescu and A. Iorgulescu, Pseudo BCK-algebras, in: Proc. DMTS'01: Combinatorics, Computability and Logics, Springer, London, 2001, 97-114.
[5] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes, 11(1983), 313-320.
[6] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japon., 30(1985), 659-661.
[7] K. Iséki, On BCI-algebras, Math. Seminar Notes, 8(1980), 125-130.
[8] K. Iséki and S. Tanaka, An introduction to the theory of $B C K$-algebras, Math. Japon., 23(1978), 1-26.
[9] Y. B. Jun, H. S. Kim and J. Neggers, On pseudo d-algebras, Inform. Sci., 179(2009), 1751-1759.
[10] Y. B. Jun, Characterizations of pseudo BCK-algebras, Sci. Math. Japon. Online, 7(2002), 225-230.
[11] J. Meng, Implicative commutative semigroups are equivalent to a class of BCKalgebras, Semigroup Forum, 50(1995), 89-96.
[12] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Seoul, 1994.
[13] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCKalgebras, Math. Japon., 31(1986), 889-894.
[14] J. Neggers, S. S. Ahn and H. S. Kim, On Q-algebras, Inter. J. Math. and Math. Sci., 27(2001), 749-757.
[15] E. H. Roh and S. Y. Kim, On $B H^{*}$-subalgebras of transitive BH*-algebras, Far East J. Math. Sci., 1(1999), 255-263.

[^0]: * Corresponding Author.

 Received December 19, 2014; accepted February 5, 2016.
 2010 Mathematics Subject Classification: 06F35, 03G25.
 Key words and phrases: pseudo atom, pseudo subalgebra, pseudo ideal, pseudo Q-algebra.

