• Title/Summary/Keyword: asymptotic solution

Search Result 237, Processing Time 0.026 seconds

THE VALUATION OF TIMER POWER OPTIONS WITH STOCHASTIC VOLATILITY

  • MIJIN, HA;DONGHYUN, KIM;SERYOONG, AHN;JI-HUN, YOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.296-309
    • /
    • 2022
  • Timer options are one of the contingent claims that, for given the variance budget, its payoff depends on a random maturity in terms of the realized variance unlike the standard European vanilla option with a fixed time maturity. Since it was first launched by Société Générale Corporate and Investment Banking in 2007, the valuation of the timer options under several stochastic environment for the volatility has been conducted by many researches. In this study, we propose the pricing of timer power options combined with standard timer options and the index of the power to the underlying asset for the investors to actualize lower risks and higher returns at the same time under the uncertain markets. By using the asymptotic analysis, we obtain the first-order approximation of timer power options. Moreover, we demonstrate that our solution has been derived accurately by comparing it with the solution from the Monte-Carlo method. Finally, we analyze the impact of the stochastic volatility with regards to various parameters on the timer power options numerically.

A VERY SINGULAR SOLUTION OF A DOUBLY DEGENERATE PARABOLIC EQUATION WITH NONLINEAR CONVECTION

  • Fang, Zhong Bo
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.789-804
    • /
    • 2010
  • We here investigate an existence and uniqueness of the nontrivial, nonnegative solution of a nonlinear ordinary differential equation: $$[\mid(w^m)]'\mid^{p-2}(w^m)']'\;+\;{\beta}rw'\;+\;{\alpha}w\;+\;(w^q)'\;=\;0$$ satisfying a specific decay rate: $lim_{r\rightarrow\infty}\;r^{\alpha/\beta}w(r)$ = 0 with $\alpha$ := (p - 1)/[pd-(m+1)(p-1)] and $\beta$:= [q-m(p-1)]/[pd-(m+1)(p-1)]. Here m(p-1) > 1 and m(p - 1) < q < (m+1)(p-1). Such a solution arises naturally when we study a very singular solution for a doubly degenerate equation with nonlinear convection: $$u_t\;=\;[\mid(u^m)_x\mid^{p-2}(u^m)_x]_x\;+\;(u^q)x$$ defined on the half line.

Numerical Experimentations on Flow Impact Phenomena for 2-D Wedge Entry Problem (2차원 쐐기형 구조물 입수 시 발생하는 유체 충격 현상에 대한 수치 실험적 연구)

  • Yum, Duek-Joon;Du, Hun;Kim, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3374-3383
    • /
    • 2011
  • In this study, numerical analyses for slamming impact phenomena have been carried out using a 2-dimensional wedge shaped structure having finite deadrise angles. Fluid is assumed incompressible and entry speed of the structure is kept constant. Geo-reconstruct(or PLIC-VOF) scheme is used for the tracking of the deforming free surface. Numerical analyses are carried out for the deadrise angles of $10^{\circ}$, $20^{\circ}$ and $30^{\circ}$. For each deadrise angle, variations are made for the grid size on the wedge bottom and for the entry speed. The magnitude and the location of impact pressure and the total drag force, which is the summation of pressure distributed at the bottom of the structure, are analyzed. Results of the analyses are compared with the results of the Dobrovol'skaya similarity solutions, the asymptotic solution based on the Wagner method and the solution of Boundary Element Method(BEM).

A NEW APPROACH FOR ASYMPTOTIC STABILITY A SYSTEM OF THE NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

  • Effati, Sohrab;Nazemi, Ali Reza
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.231-244
    • /
    • 2007
  • In this paper, we use measure theory for considering asymptotically stable of an autonomous system [1] of first order nonlinear ordinary differential equations(ODE's). First, we define a nonlinear infinite-horizon optimal control problem related to the ODE. Then, by a suitable change of variable, we transform the problem to a finite-horizon nonlinear optimal control problem. Then, the problem is modified into one consisting of the minimization of a linear functional over a set of positive Radon measures. The optimal measure is approximated by a finite combination of atomic measures and the problem converted to a finite-dimensional linear programming problem. The solution to this linear programming problem is used to find a piecewise-constant control, and by using the approximated control signals, we obtain the approximate trajectories and the error functional related to it. Finally the approximated trajectories and error functional is used to for considering asymptotically stable of the original problem.

Bifurcation Modes in the Limit of Zero Thickness of Axially Compressed Circular Cylindrical Shell

  • Kwon, Young-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.39-47
    • /
    • 2000
  • Bifurcation intability modes of axially compressed circular cylindrical shell are investigated in the limit of zero thickness (i.e., h (thickness) ${\rightarrow}$ 0) analytically, adopting the general stability theory developed by Triantafyllidis and Kwon (1987) and Kwon (1992). The primary state of the shell is obtained in a closed form using the asymptotic technique, and then the straight-forward bifurcation analysis is followed according to the general stability theory to obtain the bifurcation modes in the limit of zero thickness in a full analytical manner. Hence, the closed form bifurcation solution is obtained. Finally, the result is compared with the classical one.

  • PDF

A NON-ASYMPTOTIC METHOD FOR SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS

  • File, Gemechis;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.39-53
    • /
    • 2014
  • In this paper, a non-asymptotic method is presented for solving singularly perturbed delay differential equations whose solution exhibits a boundary layer behavior. The second order singularly perturbed delay differential equation is replaced by an asymptotically equivalent first order neutral type delay differential equation. Then, Simpson's integration formula and linear interpolation are employed to get three term recurrence relation which is solved easily by Discrete Invariant Imbedding Algorithm. Some numerical examples are given to validate the computational efficiency of the proposed numerical scheme for various values of the delay and perturbation parameters.

APPROXIMATE SOLUTIONS TO MHD SQUEEZING FLUID FLOW

  • Islam, S.;Ullah, Murad;Zaman, Gul;Idrees, M.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1081-1096
    • /
    • 2011
  • In this paper, a steady axisymmetric MHD flow of two dimensional incompressible fluids is studied under the influence of a uniform transverse magnetic field. The governing equations are reduced to nonlinear boundary value problem by applying the integribility conditions. Optimal Homotopy Asymptotic Method (OHAM) is applied to obtain solution of reduced fourth order nonlinear boundary value problem. For comparison, the same problem is also solved by Variational Iteration Method (VIM).

A SOLVABLE SYSTEM OF DIFFERENCE EQUATIONS

  • Taskara, Necati;Tollu, Durhasan T.;Touafek, Nouressadat;Yazlik, Yasin
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.301-319
    • /
    • 2020
  • In this paper, we show that the system of difference equations $x_n={\frac{ay^p_{n-1}+b(x_{n-2}y_{n-1})^{p-1}}{cy_{n-1}+dx^{p-1}_{n-2}}}$, $y_n={\frac{{\alpha}x^p_{n-1}+{\beta}(y_{n-2}x_{n-1})^{p-1}}{{\gamma}x_{n-1}+{\delta}y^{p-1}_{n-2}}}$, n ∈ ℕ0 where the parameters a, b, c, d, α, β, γ, δ, p and the initial values x-2, x-1, y-2, y-1 are real numbers, can be solved. Also, by using obtained formulas, we study the asymptotic behaviour of well-defined solutions of aforementioned system and describe the forbidden set of the initial values. Our obtained results significantly extend and develop some recent results in the literature.

Diffraction of Electromagnetic Waves by a Dielectric Wedge, Part II: Correction by Multipole Line Source (쇄기형 유전체에 의한 전자파의 회절, II부 : 다극선전원에 의한 수정)

  • 김세윤;라정웅;신상영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.8
    • /
    • pp.884-892
    • /
    • 1988
  • An asymptotic solution of electromagnetic waves scattered by an arbitrary-angled dielectric wedge in the E-polarized plane wave incidence is obtained by adding a correction to the physical optical fields given in the previous paper of these companion papers, Part I. The source for the asymptotic correction field valid in the far-field region can be equivalent to the multipole line sources at the tip of the wedge, of which coefficients are evaluated numerically by solving a dual series equation. The corrected field patterns are plotted for the typical case treated in Part I.

  • PDF

Computation of Section Curves, Reflection Characteristic Lines, and Asymptotic Curves for Visualization (가시화를 위한 단면곡선, 반사성질선, 점근선 생성 기법)

  • 남종호
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.262-269
    • /
    • 2003
  • An approach to compute characteristic curves such as section curves, reflection characteristic lines, and asymptotic curves on a surface is introduced. Each problem is formulated as a surface-plane inter-section problem. A single-valued function that represents the characteristics of a problem constructs a property surface on parametric space. Using a contouring algorithm, the property surface is intersected with a horizontal plane. The solution of the intersection yields a series of points which are mapped into object space to become characteristic curves. The approach proposed in this paper eliminates the use of traditional searching methods or non-linear differential equation solvers. Since the contouring algorithm has been known to be very robust and rapid, most of the problems are solved efficiently in realtime for the purpose of visualization. This approach can be extended to any geometric problem, if used with an appropriate formulation.