DOI QR코드

DOI QR Code

APPROXIMATE SOLUTIONS TO MHD SQUEEZING FLUID FLOW

  • Islam, S. (Department of Mathematics, CIIT) ;
  • Ullah, Murad (Department of Mathematics, Islamia College Peshawar (Charted University)) ;
  • Zaman, Gul (Department of Mathematics, University of Malakand) ;
  • Idrees, M. (Faculty of Engineering Sciences, GIK Institute)
  • Received : 2010.11.16
  • Accepted : 2011.02.07
  • Published : 2011.09.30

Abstract

In this paper, a steady axisymmetric MHD flow of two dimensional incompressible fluids is studied under the influence of a uniform transverse magnetic field. The governing equations are reduced to nonlinear boundary value problem by applying the integribility conditions. Optimal Homotopy Asymptotic Method (OHAM) is applied to obtain solution of reduced fourth order nonlinear boundary value problem. For comparison, the same problem is also solved by Variational Iteration Method (VIM).

Keywords

References

  1. T.C. Papanastasiou, G.C. Georgiou and A.N. Alexandrou, Viscous Fluid Flow, CRC Press, 1994.
  2. W.F. Stefa Hughes and R.A. Elco, Magnetohydrodynamic lubrication flow between parallel rotating disks, J. Fluid Mech. 13 (1962) 21-32. https://doi.org/10.1017/S0022112062000464
  3. Q.K. Ghori, M. Ahmed and A.M. Siddiqui, Application of homotopy perturbation method to squeezing flow of a Newtonian fiuid, Int. J. Nonlinear Sci. Num. Simul. 8 (2007) 179-184.
  4. X.J. Ran, Q.Y. Zhu and Y. Li, An explicit series solution of the squeezing flow between two infinite plates by means of the homotopy analysis method, Comm. Non-lin. Sci. Num. Simul. 14 (2009) 119-132. https://doi.org/10.1016/j.cnsns.2007.07.012
  5. R.G. Grimm, Squeezing fiows of Newtonian liquid films an analysis include the fluid inertia, Appl. Sci. Res. 32 (1976) 149-146. https://doi.org/10.1007/BF00383711
  6. S. Kamiyama, Inertia Effects in MHD hydrostatic thrust bearing, Trans. ASME, J. Lubri- cation Tech. 91 (1969) 589-596. https://doi.org/10.1115/1.3555005
  7. E.A. Hamza, The magnetohydrodynamic squeeze film, ASME, J. Tribology 110 (1988) 375- 377. https://doi.org/10.1115/1.3261636
  8. S. Bhattacharya and A. Pal, Unsteady MHD squeezing flow between two parallel rotating discs, Mech. Research Commun. 24 (1997) 615-623. https://doi.org/10.1016/S0093-6413(97)00079-7
  9. J.H. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B 20 (2006) 1141-1199. https://doi.org/10.1142/S0217979206033796
  10. S.J. Liao, Ph.D Dissertation. Jiao Tong University, 1992.
  11. J.H. He, Homotopy perturbation method for solving boundary value problems, Phys. Lett. A 350 (2006) 1187-1193.
  12. J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Mech. Appl. Eng. 167 (1998) 57-58. https://doi.org/10.1016/S0045-7825(98)00108-X
  13. J.H. He, Recent development of the homotopy perturbation method, Topological methods in nonlinear analysis 31 (20008) 205-209.
  14. V. Marinca and N. Herisanu, Optimal homotopy perturbation method for strongly nonlin- ear differential equations, Non. Sci. Lett. A, 1 (2010) 273-280.
  15. V. Marinca, N. Herisanu and I. Nemes, Optimal homotopy asymptotic method with appli- cation to thin film flow, Cent. Eur. J. Phys. 6 (2008) 648-653. https://doi.org/10.2478/s11534-008-0061-x
  16. V. Marinca and N. Herisanu, An optimal homotopy asymptotic method for solving non- linear equations arising in heat transfer, Int. Comm. Heat Mass Tran. 35 2008) 710-715. https://doi.org/10.1016/j.icheatmasstransfer.2008.02.010
  17. V. Marinca, N. Herisanu, C. Bota, and B. Marinca, An optimal homotopy asymptotic method applied to the steady flow of fourth-grade fluid past a porous plate, Appl. Math. Lett. 22 (2009) 245-251. https://doi.org/10.1016/j.aml.2008.03.019
  18. V. Marinca and N. Herisanu, Determination of periodic solutions for the motion of a particle on a rotating parabola by means of the optimal homotopy asymptotic method, J. Sound and Vibration 329 1450-1459, 2010. https://doi.org/10.1016/j.jsv.2009.11.005
  19. S. Islam, R.A. Shah , I. Ali and N. M. Allah, Optimal homotopy asymptotic for thin film flows of a third grade fluid, Int. J. Non-Lin. Sci. Numeric. Simul. 11 (2010) 1123-1135.
  20. J. Ali, S. Islam, S. Islam and G. Zaman, The solution of multipoint boundary value prob- lems by the optimal homotopy asymptotic method, Comp. Math. appl. 59 (2010) 2000-2006. https://doi.org/10.1016/j.camwa.2009.12.002
  21. S. Iqbal, M. Idrees, A.M. Siddiqui and A.R. Ansari, Some Solutions of the Linear and Nonlinear Klein-Gordon Equations using the Optimal Homotopy Asymptotic Method, Appl. Math. Comput. doi:10.1016/j.amc.2010.04.001.
  22. M.R. Mohyuddin and T. Gotz, Resonance behavior of viscoelastic fluid in Poiseuille flow in the presence of a transversal magnetic field, Int. J. Numer. Meth. Fluid 49 (2005) 837- 847. https://doi.org/10.1002/fld.1026
  23. J.H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput. 114 (2000) 115-123. https://doi.org/10.1016/S0096-3003(99)00104-6
  24. S. Abbasbanday and E. Shivanian, title, Math. Comput. Appl. 14 (2009) 147-158.
  25. D.D. Ganji, M. Jannatabadi and E. Mohseni, Application of He's variational iteration method to nonlinear Jaulent-Miodek equations and comparing it with ADM, J. Comput. Appl. Math. 207 (2007) 35-45. https://doi.org/10.1016/j.cam.2006.07.029
  26. D.D. Ganji, Hafez Tari and M. Bakhshi Jooybari, Variational iteration method and homo- topy perturbation method for nonlinear evolution equations, Comp. Math. Appl. 54 (2007) 1018-1027. https://doi.org/10.1016/j.camwa.2006.12.070
  27. N.Herisanu and V. Marinca, A modified variational iteration method for strongly nonlinear problems, Nonl. Sci. Lett. A, 1 (2010) 183-192.
  28. M. Idrees, S. Islam, S., Sirajul Haq and S. Islam, Application of Optimal homotopy asymp- totic method to squeezing flow, Computers and Mathematics with applications, 59 (2010) 3858-3866. https://doi.org/10.1016/j.camwa.2010.04.023

Cited by

  1. An optimal variational iteration method for investigating the physical behavior of quasi-steady squeezing flow confined between parallel rigid walls vol.96, pp.11, 2011, https://doi.org/10.1088/1402-4896/ac1841