References
- T.C. Papanastasiou, G.C. Georgiou and A.N. Alexandrou, Viscous Fluid Flow, CRC Press, 1994.
- W.F. Stefa Hughes and R.A. Elco, Magnetohydrodynamic lubrication flow between parallel rotating disks, J. Fluid Mech. 13 (1962) 21-32. https://doi.org/10.1017/S0022112062000464
- Q.K. Ghori, M. Ahmed and A.M. Siddiqui, Application of homotopy perturbation method to squeezing flow of a Newtonian fiuid, Int. J. Nonlinear Sci. Num. Simul. 8 (2007) 179-184.
- X.J. Ran, Q.Y. Zhu and Y. Li, An explicit series solution of the squeezing flow between two infinite plates by means of the homotopy analysis method, Comm. Non-lin. Sci. Num. Simul. 14 (2009) 119-132. https://doi.org/10.1016/j.cnsns.2007.07.012
- R.G. Grimm, Squeezing fiows of Newtonian liquid films an analysis include the fluid inertia, Appl. Sci. Res. 32 (1976) 149-146. https://doi.org/10.1007/BF00383711
- S. Kamiyama, Inertia Effects in MHD hydrostatic thrust bearing, Trans. ASME, J. Lubri- cation Tech. 91 (1969) 589-596. https://doi.org/10.1115/1.3555005
- E.A. Hamza, The magnetohydrodynamic squeeze film, ASME, J. Tribology 110 (1988) 375- 377. https://doi.org/10.1115/1.3261636
- S. Bhattacharya and A. Pal, Unsteady MHD squeezing flow between two parallel rotating discs, Mech. Research Commun. 24 (1997) 615-623. https://doi.org/10.1016/S0093-6413(97)00079-7
- J.H. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B 20 (2006) 1141-1199. https://doi.org/10.1142/S0217979206033796
- S.J. Liao, Ph.D Dissertation. Jiao Tong University, 1992.
- J.H. He, Homotopy perturbation method for solving boundary value problems, Phys. Lett. A 350 (2006) 1187-1193.
- J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Mech. Appl. Eng. 167 (1998) 57-58. https://doi.org/10.1016/S0045-7825(98)00108-X
- J.H. He, Recent development of the homotopy perturbation method, Topological methods in nonlinear analysis 31 (20008) 205-209.
- V. Marinca and N. Herisanu, Optimal homotopy perturbation method for strongly nonlin- ear differential equations, Non. Sci. Lett. A, 1 (2010) 273-280.
- V. Marinca, N. Herisanu and I. Nemes, Optimal homotopy asymptotic method with appli- cation to thin film flow, Cent. Eur. J. Phys. 6 (2008) 648-653. https://doi.org/10.2478/s11534-008-0061-x
- V. Marinca and N. Herisanu, An optimal homotopy asymptotic method for solving non- linear equations arising in heat transfer, Int. Comm. Heat Mass Tran. 35 2008) 710-715. https://doi.org/10.1016/j.icheatmasstransfer.2008.02.010
- V. Marinca, N. Herisanu, C. Bota, and B. Marinca, An optimal homotopy asymptotic method applied to the steady flow of fourth-grade fluid past a porous plate, Appl. Math. Lett. 22 (2009) 245-251. https://doi.org/10.1016/j.aml.2008.03.019
- V. Marinca and N. Herisanu, Determination of periodic solutions for the motion of a particle on a rotating parabola by means of the optimal homotopy asymptotic method, J. Sound and Vibration 329 1450-1459, 2010. https://doi.org/10.1016/j.jsv.2009.11.005
- S. Islam, R.A. Shah , I. Ali and N. M. Allah, Optimal homotopy asymptotic for thin film flows of a third grade fluid, Int. J. Non-Lin. Sci. Numeric. Simul. 11 (2010) 1123-1135.
- J. Ali, S. Islam, S. Islam and G. Zaman, The solution of multipoint boundary value prob- lems by the optimal homotopy asymptotic method, Comp. Math. appl. 59 (2010) 2000-2006. https://doi.org/10.1016/j.camwa.2009.12.002
- S. Iqbal, M. Idrees, A.M. Siddiqui and A.R. Ansari, Some Solutions of the Linear and Nonlinear Klein-Gordon Equations using the Optimal Homotopy Asymptotic Method, Appl. Math. Comput. doi:10.1016/j.amc.2010.04.001.
- M.R. Mohyuddin and T. Gotz, Resonance behavior of viscoelastic fluid in Poiseuille flow in the presence of a transversal magnetic field, Int. J. Numer. Meth. Fluid 49 (2005) 837- 847. https://doi.org/10.1002/fld.1026
- J.H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput. 114 (2000) 115-123. https://doi.org/10.1016/S0096-3003(99)00104-6
- S. Abbasbanday and E. Shivanian, title, Math. Comput. Appl. 14 (2009) 147-158.
- D.D. Ganji, M. Jannatabadi and E. Mohseni, Application of He's variational iteration method to nonlinear Jaulent-Miodek equations and comparing it with ADM, J. Comput. Appl. Math. 207 (2007) 35-45. https://doi.org/10.1016/j.cam.2006.07.029
- D.D. Ganji, Hafez Tari and M. Bakhshi Jooybari, Variational iteration method and homo- topy perturbation method for nonlinear evolution equations, Comp. Math. Appl. 54 (2007) 1018-1027. https://doi.org/10.1016/j.camwa.2006.12.070
- N.Herisanu and V. Marinca, A modified variational iteration method for strongly nonlinear problems, Nonl. Sci. Lett. A, 1 (2010) 183-192.
- M. Idrees, S. Islam, S., Sirajul Haq and S. Islam, Application of Optimal homotopy asymp- totic method to squeezing flow, Computers and Mathematics with applications, 59 (2010) 3858-3866. https://doi.org/10.1016/j.camwa.2010.04.023
Cited by
- An optimal variational iteration method for investigating the physical behavior of quasi-steady squeezing flow confined between parallel rigid walls vol.96, pp.11, 2011, https://doi.org/10.1088/1402-4896/ac1841