• Title/Summary/Keyword: asymptotic

Search Result 2,062, Processing Time 0.025 seconds

Large-System Analyses of Multiple-Antenna System Capacities

  • Biglieri, Ezio;Taricco, Giorgio
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.96-103
    • /
    • 2003
  • Asymptotic theorems are very commonly used in probability. For systems whose performance depends on a set of n random parameters, asymptotic analyses for n${\to}{\infty}$ are often used to simplify calculations and obtain results yielding useful hints at the behavior of the system for finite n. These asymptotic analyses are especially useful whenever the convergence to the asymptotic results is so fast that even for moderate n they yield results close to the true values. This tutorial paper illustrates this principle by applying it to capacity calculations of multiple-antenna systems.

An Asymptotic Solution and the Green's Function for the Transverse Vibration of Beams with Variable Properties

  • Kim, Yong-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.34-38
    • /
    • 2010
  • An analytical solution procedure for the dynamic response of beams with variable properties is developed by using an asymptotic solution and the Green's function. This asymptotic closed form solution is derived for the transverse vibration of beams under the assumption of slowly varying properties, such as mass, cross-section, tension etc., along the beam length. However, this solution is still found to be very accurate even in the case of large variation, such as step change in cross-section, mass, and tension. Therefore, this derived asymptotic closed form solution and the Green's function can be easily applied to find dynamic responses for various kind of beam vibration problems.

Effective Asymptotic SER Performance Analysis for M-PSK and M-DPSK over Rician-Nakagami Fading Channels (Rician-Nakagami 페이딩 채널에서 M-PSK와 M-DPSK 시스템에 대한 효과적인 점근적 심볼 에러 확률 성능 분석)

  • Lee, Hoojin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2177-2182
    • /
    • 2016
  • Using the existing exact but quite complicated symbol error rate (SER) expressions for M-ary phase shift keying (M-PSK) and M-ary differential phase shift keying (M-DPSK), we derive effective and concise closed-form asymptotic SER formulas especially in Rician-Nakagami fading channels. The derived formulas can be utilized to efficiently verify the achievable error rate performances of M-PSK and M-DPSK systems for the Rician-Nakagami fading environments. In addition, by exploiting the modulation gains directly obtained from the asymptotic SER formulas, we also theoretically demonstrate that M-DPSK suffers an asymptotic SER performance loss of 3.01dB with respect to M-PSK for a given M in Rician-Nakagami fading channels at high signal-to-noise ratio (SNR).

INVITED PAPER MULTIVARIATE ANALYSIS FOR THE CASE WHEN THE DIMENSION IS LARGE COMPARED TO THE SAMPLE SIZE

  • Fujikoshi, Yasunori
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.1
    • /
    • pp.1-24
    • /
    • 2004
  • This paper is concerned with statistical methods for multivariate data when the number p of variables is large compared to the sample size n. Such data appear typically in analysis of DNA microarrays, curve data, financial data, etc. However, there is little statistical theory for high dimensional data. On the other hand, there are some asymptotic results under the assumption that both and p tend to $\infty$, in some ratio p/n ${\rightarrow}$c. The results suggest that the new asymptotic results are more useful and insightful than the classical large sample asymptotics. The main purpose of this paper is to review some asymptotic results for high dimensional statistics as well as classical statistics under a high dimensional asymptotic framework.

A Uniform Asymptotic Solution for Transmitted Waves through a Plane Dielectric Interface from a Denser to a Rarer Mediums by Using Parabolic Cylinder Functions

  • Quang, Dinh Trong;Goto, Keiji;Kawano, Toru;Ishihara, Toyohiko
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.45-54
    • /
    • 2012
  • When the cylindrical wave is incident on a plane dielectric interface from a denser medium to a rarer one, the asymptotic solution for the transmitted wave in the near region is different from the one in the far region. In this paper, we have derived a novel uniform asymptotic solution represented by using the parabolic cylinder function for the transmitted and scattered waves observed in the rarer medium when the cylindrical wave is incident on the plane dielectric interface from the denser medium. The validity of the uniform asymptotic solution has been confirmed by comparing with the reference solution calculated numerically. It has been clarified that the transition wave plays an important role to connect smoothly the asymptotic solution in the near region to the one in the far region through the transition region. We have shown the very interesting phenomenon that the lateral wave type transmitted wave is observed in the far and shallow region.

On Statistical Estimation of Multivariate (Vector-valued) Process Capability Indices with Bootstraps)

  • Cho, Joong-Jae;Park, Byoung-Sun;Lim, Soo-Duck
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.697-709
    • /
    • 2001
  • In this paper we study two vector-valued process capability indices $C_{p}$=($C_{px}$, $C_{py}$ ) and C/aub pm/=( $C_{pmx}$, $C_{pmy}$) considering process capability indices $C_{p}$ and $C_{pm}$ . First, two asymptotic distributions of plug-in estimators $C_{p}$=($C_{px}$, $C_{py}$ ) and $C_{pm}$ =) $C_{pmx}$, $C_{pmy}$) are derived.. With the asymptotic distributions, we propose asymptotic confidence regions for our indices. Next, obtaining the asymptotic distributions of two bootstrap estimators $C_{p}$=($C_{px}$, $C_{py}$ )and $C_{pm}$ =( $C_{pmx}$, $C_{pmy}$) with our bootstrap algorithm, we will provide the consistency of our bootstrap for statistical inference. Also, with the consistency of our bootstrap, we propose bootstrap asymptotic confidence regions for our indices. (no abstract, see full-text)see full-text)e full-text)

  • PDF

The Asymptotic Worst-Case Ratio of the Bin Packing Problem by Maximum Occupied Space Technique

  • Ongkunaruk, Pornthipa
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.126-132
    • /
    • 2008
  • The bin packing problem (BPP) is an NP-Complete Problem. The problem can be described as there are $N=\{1,2,{\cdots},n\}$ which is a set of item indices and $L=\{s1,s2,{\cdots},sn\}$ be a set of item sizes sj, where $0<sj{\leq}1$, ${\forall}j{\in}N$. The objective is to minimize the number of bins used for packing items in N into a bin such that the total size of items in a bin does not exceed the bin capacity. Assume that the bins have capacity equal to one. In the past, many researchers put on effort to find the heuristic algorithms instead of solving the problem to optimality. Then, the quality of solution may be measured by the asymptotic worst-case ratio or the average-case ratio. The First Fit Decreasing (FFD) is one of the algorithms that its asymptotic worst-case ratio equals to 11/9. Many researchers prove the asymptotic worst-case ratio by using the weighting function and the proof is in a lengthy format. In this study, we found an easier way to prove that the asymptotic worst-case ratio of the First Fit Decreasing (FFD) is not more than 11/9. The proof comes from two ideas which are the occupied space in a bin is more than the size of the item and the occupied space in the optimal solution is less than occupied space in the FFD solution. The occupied space is later called the weighting function. The objective is to determine the maximum occupied space of the heuristics by using integer programming. The maximum value is the key to the asymptotic worst-case ratio.

Asymptotically Adimissible and Minimax Estimators of the Unknown Mean

  • Andrew L. Rukhin;Kim, Woo-Chul
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.2
    • /
    • pp.191-200
    • /
    • 1993
  • An asymptotic estimation problem of the unknown mean is studied under a general loss function. The proof of this result is based on the asymptotic expansion of the risk function. Also conditions for second order admissibility and minimaxity of a class of estimators depending only on the sample mean are established.

  • PDF

Improving Efficiency of the Moment Estimator of the Extreme Value Index

  • Yun, Seokhoon
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.3
    • /
    • pp.419-433
    • /
    • 2001
  • In this paper we introduce a method of improving efficiency of the moment estimator of Dekkers, Einmahl and de Haan(1989) for the extreme value index $\beta$. a new estimator of $\beta$ is proposed by adding the third moment ot the original moment estimator which is composed of the first two moments of the log-transformed sample data. We establish asymptotic normality of the new estimator and examine and adaptive procedure for the new estimator. The resulting adaptive estimator proves to be asymptotically better than the moment estimator particularly for $\beta$<0.

  • PDF

Validation of an asymptotic zone conditional expression for turbulent burning velocity against DNS database (영역조건평균에 기초한 난류연소속도의 직접수치해법검증)

  • Kim, Soo-Youb;Huh, Kang-Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.62-69
    • /
    • 2004
  • Zone conditional formulations for the Reynolds average reaction progress variable are used to derive an asymptotic expression for turbulent burning velocity. New DNS runs are performed for validation in a statistically one dimensional steady state configuration. Parametric study is performed with respect to turbulent intensity, integral length scale, density ratio and laminar flame speed. Results show good agreement between DNS results and the asymptotic expression in terms of measured maximum flame surface density and estimated turbulent diffusivity in unburned gas.

  • PDF