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Large-System Analyses of Multiple-Antenna System
Capacities

Ezio Biglieri and Giorgio Taricco

Abstract: Asymptotic theorems are very commonly used in proba-
bility. For systems whose performance depends on a set of n ran-
dom parameters, asymptotic analyses for n — 00 are often used
to simplify calculations and obtain results yielding useful hints at
the behavior of the system for finite 2. These asymptotic analyses
are especially useful whenever the convergence to the asymptotic
results is so fast that even for moderate 7 they yield results close
to the true values. This tutorial paper illustrates this principle by
applying it to capacity calculations of multiple-antenna systems.

Index Terms: Multiple antennas, MIMO channels, channel capac-
ity, space-time codes, asymptotic analysis, random matrices, fading
channels.

I. INTRODUCTION AND SYSTEM MODEL

Asymptotic theorems are among the most widely used tools
in applications of probability theory: examples of these are the
law of large numbers and the central limit theorem. Other ex-
amples come from random-matrix theory, which has recently
been widely recognized as an important tool for the study of
large systems like CDMA [19]-{20], OFDM (6] and [21], and
multiple-antenna systems [4]. Asymptotic theorems are espe-
cially useful when applied to the analysis of systems whose be-
havior depends on a set of n random parameters, and such that
the convergence is so fast that for moderate, or even small, val-
ues of n the asymptotic results come close to exact values (a
simple example of this is given by early computer programs for
the generation of Gaussian random numbers, obtained by sum-
ming a small number of uniform random variables and invoking
the central limit theorem). In this tutorial paper we show how
this concept finds application to the evaluation of capacities of
multiple-antenna systems: in fact, the results obtained approxi-
mate very closely those referring to a nonasymptotic regime.

Here we consider a radio communication system with
t trasmit and r receive antennas (Fig. 1). Assuming two-
dimensional elementary constellations throughout, the input-
output relation between the observed vector y € C” and the
input vector x € C! is given by

y = Hx + z, (1)

where the ¢ components of x are the signals transmitted by
each antenna, the » components of y are the signals received,
H ¢ C”*! is a complex matrix whose entries 4;; describe the
gains of each transmission path to a receive from a transmit an-
tenna. In the following, unless otherwise stated, we assume that
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Fig. 1. Transmission and reception with ¢ transmitting and r receiving
antennas. The channel gains are described by the r x ¢ matrix H.

the entries of H are iid zero-mean circularly-symmetric com-
plex Gaussian distributed as A, (0, 1) (i.e., their real and imagi-
nary parts are independent and have variance 1/2). The vector z
is circularly-symmetric complex Gaussian distributed and repre-
sents the additive channel noise. We assume that E[zz '] = I,.,!
that is, the noises affecting the different receivers are indepen-
dent, and the signal power E[x'x] coincides with the signal-to-
noise ratio. The signal power is constrained by E[jx!x] < P,
so that P/t is the maximum average power transmitted by each
antenna.

It is of interest to evaluate the capacity of the transmission
system described in (1). Two scenarios will be considered. First,
we assume that H is a random matrix, and each transmission of
one vector x corresponds to an independent realization of H.
Next, we assume that H remains constant during the transmis-
sion of an entire code word. The two channel models will be
referred to as ergodic and nonergodic, respectively (see [2] for
details).

II. ERGODIC-CHANNEL CAPACITY

We assume here that the entries of H are iid and distributed as
N.(0,1) and every transmission of a vector x corresponds to an
independent value of H. This choice models fast Rayleigh fad-
ing with enough separation within antennas such that the fades
for each TX/RX antenna pair are independent. We also assume
that the channel state information (that is, the realization of H) is
known at the receiver, while only the distribution of H is known
at the transmitter (the latter assumption is necessary for capac-
ity computations, since the transmitter must choose an optimum
code for that specific channel).

1Here and in the following (-)T denotes the Hermitian conjugate of a ma-
trix/vector.
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The capacity, which is achieved by a transmitted signal x ~
N:(0, (P/t)I;), is given by [18]

C=E [log det (L + ?HHTH ) )
Here and hereafter I, denotes the a x a identity matrix; more-
over, log denotes base-2 logarithm, so that C is expressed in bits
per dimension pair, or, if one dimension pair per second is trans-
mitted in a 1 Hz bandwidth, in bit/s/Hz. Exact calculation of the
expectation in (2) yields [18]

> P
/ log <1 + —)x)
0 t

L] Ame A da,

m—1 k"
¢ = kg (k+n—m)!

3

where m £ min{t,r}, n £ max{t,r}, and L7(-) are Laguerre
polynomials. An alternative expression, avoiding the summa-
tion in the integrand, can be obtained by using the Christoffel-
Darboux identity for Laguerre polynomials:

3
L
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which, for Ay = A9, yields
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As expression (3) is quite involved, and can hardly give im-
mediate insight into the behavior of capacity, asymptotic analy-
ses can succor us in the task of examining the latter in depth.

It is convenient to observe that we have

)
P
log <1 + —If_)”) ;

where \; denote the eigenvalues of HH' (there are no more than
min(¢, r) nonzero eigenvalues).

min(¢,r

o=y
=1

()
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Fig. 2. Capacity (in bit/s/Hz) of the ergodic Rayleigh MIMO channel
with » = 1 (continuous line). The asymptotic approximation C ~
log(1 + P) is shown by the dotted line.

15

Fig. 3. Capacity (in bit/s/Hz) of the ergodic Rayleigh MIMO channel
with ¢t = 1 (continuous line). The asymptotic approximation C ~
log(1 + Pr) is also shown (dotted line).

A. Two Special Cases: r = landt =1

The simplest special case of capacity calculation occurs when
min(¢,r) = 1, that is, either r = 1 or ¢ = 1, so that from (6) we
have C' = log(1 + (P/t)A), with X the only nonzero eigenvalue
of HH'. When r = 1 this eigenvalue is A = 3 ;_, |h1]?.
Invoking the law of large numbers, ast — oo we have (1/¢)\ —
1, so that C — log(1 + P). The accuracy of the approximation
C' = log(1 + P) is shown in Fig. 2.

Consider now the case t = 1. We have \ = Z:zl |hi1 %,
which as r — oo tends to r. Thus, we obtain the asymptotic
approximation C' = log(1l + rP), shown in Fig. 3 along with
the exact value obtained numerically from (3). It is seen that the
asymptotic expression of C' comes very close to the true capacity
even for values of r as small as 1.

We can observe that in both cases of » = 1 and t = 1 the
asymptotic expression of C' is valid independently of the as-
sumption of Gaussian entries for H: actually, it suffices to have
independent, identically distributed (iid) unit-variance entries.
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B. General Case

More generally, we can evaluate an asymptotic approxima-
tion to (2) by using a result from random-matrix theory [16]
(see Appendix A for details):

Theorem 1: Let H,, be a sequence of m x n random ma-
trices with iid entries with zero mean and unit variance, such
that m/n — a as n — oo. Let Fy,(z) denote the empirical
eigenvalue distribution of LH, HJ, i.e.,

u(z — \p(H,HI /n)), )

NgE

1
Fn(x)_é -
k lm

where u( - ) denotes the unit step function, and A, (W) denotes
the kth eigenvalue of W. Then, F,(z) converges weakly, as
n — 00, to a deterministic distribution F,.(x) whose corre-
sponding pdf is

fool@) = (1 —a1), 8(a) + YD 020

2rax

where ()4 2 max(0, -) and a,b 2 (1 F /).
Application of Theorem 1 yields the following asymptotic re-
sult:

—? — /oo log(1 + a™' Pz) foo (2)dz = C(a, P),  (9)
0

where

(x —a)(b —z)

D dz. (10)

b
Cla,P) 2 / log(1+ a ' Px)

(Notice that a scaling factor r has been taken into account due
to the different definitions of the matrices H and H,, in the The-
orem.)

This integral can be computed in a rather straighforward way
as shown in Appendix B, yielding the result

lim% — max(1,a) - Cla, P)

_ max(1,a)
T aln2
‘(ln(w+P) —aw.+(1—a)ln(l- w,)), an

“ A .
where again m = min{t,r},

we = (wE Vw? —4/a)/2, (12)
and
a, 1 1
W=+~ 4+ 5. (13)

Evaluation of this integral was also performed in [14] and [15]
in the context of CDMA analysis. In [20] the calculation is done
indirectly, without actually computing the integral. In [14] the
integral is computed directly (using a method that differs from
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C/m

Fig. 4. Asymptotic ergodic capacity per antenna (C/m) with indepen-
dent Rayleigh fading as ¢,r — oo and ¢/r — a (solid curves). The
ergodic capacity per antenna for » — 2 is also shown for comparison

(x).

Cim

Fig. 5. Asymptotic ergodic capacity per antenna (C/m) with indepen-
dent Rayleigh fading as ¢, — oo and t/r — « (solid curves). The
ergodic capacity per antenna for r = 4 is also shown for comparison

(x).

that of Appendix B). Yet another technique to derive (11) is de-
scribed in [13] and [15]. This asymptotic resuit is plotted in
Figs. 4 and 5. The figures show also the values of C'/m corre-
sponding to r = 2 and 4, respectively and show how good the
asymptotic approximation is even for such small values of 7. By
setting o = t/r, (11) yields C as a function of ¢ and r, and
provides values very close to the true capacity even for small
r,t. We stress that, for the validity of (11), it is not necessary
to assume that the entries of H are Gaussian, as needed for the
preceding nonasymptotic result (3): a sufficient condition is that
H have iid entries with zero mean and unit variance [16].

C. A Reciprocity Formula

For the asymptotic ergodic capacity, from equality
1 P 1 .
—E log det (I,. + ?HHT) = ;;E log det <Ig + %BHJ’H> ;
3 'S

the following reciprocity relation can be derived:
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Cla,P) = a~'Ca™ !, atP). (14)

III. NONERGODIC CHANNEL CAPACITY

When H is chosen randomly at the beginning of the transmis-
sion, and held fixed for all channel uses, average capacity has no
meaning [2]. In this case the quantity to be evaluated is, rather
than capacity, outage probability, that is, the probability that the
transmission rate R cannot be sustained by the channel. The ca-
pacity (or, more precisely, the mutual information exchanged in
the multiple-antenna channel) is the random variable

C(H) = log det (1,. + ?HHT> , (15)
and the outage probability is defined as
P,y (R) = P(C(H) < R). (16)

The evaluation of (16) can be done by Monte Carlo simu-
lation. However, one can profitably use an asymptotic result
which states that, as ¢ and r grow to infinity, the capacity C'(H)
tends to a Gaussian random variable. This result has been re-
cently obtained in [11] for the case of iid zero-mean circularly-
symmetric complex Gaussian distributed entries. A related re-
sult applying to matrices with iid real random entries is reported
in [10] and numerical evidence is provided by several other au-
thors [7] and [22].

Moreover, it was observed in [11], [17), and [22] that C'(H)
follows very closely a normal distribution even for small values
of r and ¢: thus, the computation of the mean and variance of
C(H) allows one to obtain a good approximation of its probabil-
ity density function. The expected value of C'(H) is the ergodic
capacity discussed in the previous section. Its variance was eval-
uated independently in the form of an integral for finite ¢ and r
by Smith and Shafi [17] and by Wang and Giannakis [22] (the
latter reference actually derives the moment generating function
of C'(H), and hence all of its moments). The case of asymptot-
ically large ¢ and r is dealt with by [15] in a more general case
of correlated Gaussian entries of H where the authors resort to
the replica method.

In practice, the asymptotic mean and variance of C'(H), de-
noted pc and o, respectively, yield a close approximation to
the statistics of C'{H) even for small  and t. Thus, the outage
probability can be obtained in the form

Pou(R) = ©Q (EU_ZE) .

A. Asymptotic Variance Calculation

a7

The integral expressions [17] and [22] do not lead easily to an
asymptotic expression of the variance, whose calculation would
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Fig. 6. Variance of the nonergodic capacity with P = 10 dB. Continuous
line: Asymptotic variance from [15]. (x): Numerical integration of Bai-
Silverstein [1] expression for the variance. (¢) and (0): Monte Carlo
simulation with » = 4 and 16.

require determining the limit joint distribution of pairs of eigen-
values of HH'. Approximations to g2 are derived in [11],
while exact results are obtained in [1] and [15]. Sengupta and
Mitra [15] use the replica method to derive results that can be
specialized to our problem in the form

2 9
—logelog (1 - q-é’—) (18)
withw 2 \/1/P, 3 2 a~', and q, p are given by
—1- 1—w?)? + 4fuw?
q-‘ﬁ:ﬂ 1-w+/B-1-w +ﬂw (19)
2w
él«ﬂ—w2+\/(1—6—w2)2+4w2' 20)

2w

An alternative expression in the form of an integral for the
asymptotic capacity variance was obtained by Bai and Silver-
stein in [1]). Using their (1.17) we have the following expression
with a, b £ 1 + o F 2y/a. By the change of variables

{ z=1+a+2/acosy

y=1+a+2y/acosh ’ 22)

we obtain (23).
This integral can be evaluated numerically. However, its cal-
culation is made hard by the fact that the integrand exhibits a
logarithmic discontinuity at the line o = 6. Numerical results
are shown in Figs. 6-8.

The values of the variance for P — oo are obtained by ob-
serving that, as w — 0, equations (19)—(20) yield

o = (k)ge) // r+a/P)y+a/P

dzy/(x — a)(b

2)\/(y = a)(b—y)

x In<1+
{ (=12 (z ~y)?+

+(y/(x —a)(b—x) —z\/(y —a)(b—y))

}dxdy 2n
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Fig. 7. Same as Fig. 6 but P = 20 dB.
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Fig. 8. Same as Fig. 6 but P = 30 dB.

1€ﬂw (1f5)3'w3+0('w5) forg <1
q= -
6w1+611w (ﬂf1)3w3+0(w5) forg > 1,
(24)
and
1_ﬂ+1fﬁw—(1_ﬁﬂ)3w3+0(w5) forf <1
p:
/Rilw_ (ﬁ"gl)sw‘g-{—()(wfs) forg > 1,
(25)
so that
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Fig. 9. Outage probability for r = ¢ = 4 and a nonergodic Rayleigh
channel vs. R, the transmission rate in bit/s/Hz. The continuous
line shows the results obtained by Monte Carlo simulation, while the
dashed line shows the normal approximation.

2.2 1—54———26 w? + O(w?) for 3 <1
1_q; _ Ry
S S O YOR
1 ﬁ+5(ﬁ—1)w + O(w*) forf>1,
(26)

which allows us to compute the limit

lim o% = loge -log(l — min(a,a™)). 2N
P—oo

B. Numerical Results

Fig. 9, which plots P, versus R for r = ¢ = 4 and two
values of SNR, shows the quality of the Gaussian approximation
for a Rayleigh channel.

Based on these results, we can evaluate the outage probabili-
ties as in Figs. 10 and 11. These figures show the rate R that can
be supported by the channel for a given SNR and a given outage
probability, that is, from (17):

R= He — UCQ-I(Pout)~

Notice how as r and ¢ increase the outage probabilities curves
come closer to each other: in fact, as r and ¢ grow to infinity the
channel tends to an ergodic channel. This fact has already been
observed in [5] (for r = ¢ — o0) where they say that the mutual
information C'(H) tends to be insensitive to the realization of
H.

Fig. 12 shows the outage capacity (at Four = 0.01) of an
independent Rayleigh fading MIMO channel.

sin ¢ sin §

2 = g (lose\t [T
e = a( s ) /0 /0 (1 +2y/acosp +a(l +1/P))(1 + 2y/acosf + a(l + 1/P))

4(1 + a + 24/acos ) sin (1 + a + 2+/a cos f) sin §

X ln{l-{-

(a —1)2(cosp — cos8)2 + ((1 + a)(sin ¢ — sin ) + 2\/asin(p — §))?

}dapd()
@3)
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Fig. 10. Transmission rate that can be supported with » = ¢t = 4 and
a give outage probability by a nonergodic Rayleigh channel. The
results are based on the Gaussian approximation.
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Fig. 11. Transmission rate that can be supported with » = t = 16 and
a give outage probability by a nonergodic Rayleigh channel. The
results are based on the Gaussian approximation.

IV. CONCLUSION

We have shown that asymptotic analyses of multiple-antenna
systems can be profitably used to obtain results which often
yield accurate approximations of the ergodic and nonergodic ca-
pacities even when the parameters take on small values.
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APPENDIX A: LIMITING DISTRIBUTION OF THE
EIGENVALUES OF HH' /r

The Stieltjes transform of a probability distribution F(A) is
defined as

mp(z) & /‘(/\ — 2)"'dF()). (28)

101
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350+
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200} SNR=24.dB
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1%—outage capacity [bit/s/Hz]

100
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Fig. 12. Outage capacity (at P,ut = 0.01) with independent Rayleigh
fading and » = ¢ antennas.

It is assumed that mp(z) € C* = {z : Im(z) > 0} whenever
z € C*. The inverse Stieltjes transform returns the correspond-
ing pdf at its points of continuity:

F'(\) = 1 lim mp(A + jw).

(29)
T w—0t
The result above derives from the following:

1 - y—1
— lim Im [ (x— A — jw) " dF(x)
T w—0t

1 w
=—1i ————dF

i wlig)l+ / (2 =M% +w? ()
= /5(37 — N)dF(z)
= F'(\). (30)

The Stieltjes transform can be used to obtain the limiting
eigenvalue distribution of the matrix H'H/r, where Hisat x r
random matrix with iid entries having zero mean and unit vari-
ance and we assume that {/r — « as the matrix dimensions
grow to infinity.

According to [16], the Stieltjes transform m(z) of this distri-
bution satisfies the following equation:

1
l—a—azm(z) — 2z

m(z) =

= axm)P+(z+a—-D)mz)+1=0
= m(2)
l—a-z+ /22 -2(a+ Dz + (a —1)2

3

31

20z

where {/z denotes the square root of z in C*.
It is straightforward to obtain the corresponding probability
density function:
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(1—a ') é(x)
V(=2 +2(a+ Dz — (a —1)%),
2nax

flz) =

_J’_

, (32)

where (z); £ max(0, z).

Notice that the first term appears only when o > 1 since,
in that case, its Stieltjes transform —(1 — o~!)/z € C*. This
agrees with the fact that only in that case the matrix H'H has
(t —r) eigenvalues equal to zero, i.e., a fraction {1 — a~1) of all
its eigenvalues.

APPENDIX B: COMPUTATION OF ERGODIC
CAPACITY

With the change of variables = 1 + « + 24/ cos 8 in (10)
we obtain

2m
Cla, P) = %/0 log(1+a’lP(1+a+2\/&c059))

.2
sin” 6 a8,
1+ a+2y/acosb

(33)

which is a real number. Next, notice that

1+a 'P(1 4 a+ 2yacosb)
=a"V2Pem1(e? 4 o2, ) (e + o' 2w ), (34)
wherew £ 1 +a '+ P ' andwy 2 (w + /w? —4/a)/2.

From the inequality

(a?w, — 1)(?w_ —1)

= —a 121 -al/?)?2 - a'2Pp~t <0, (35)

we have a'/?w_ < 1 and a'/?w, > 1, which makes it conve-
nient to rewrite the above expression in the form

L+a "P(1+ a+2yacosb)

exp(;6) al/2w_
- SPUP)N (14 0= .
w+P(1 + a1/2w+) < + o) <0 69

We can now expand the logarithm of the above function in a
uniformly-convergent series:

In(1+a ' P(1 + a + 2y/acosh))

= ln(w4 P) ) )
X _1\k-1 (7 : 2w
) - () Lo

This can be integrated term-by-term. To do this, we need to
calculate
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e sin” 6
I &= 0 de,
k TK'/O ¢ 1+ a+2y/acosd '
for every integer k. After some algebra, we obtain

(38)

1 k=0

1

_5\/5

(C1F Y a2 > 1

k] =1 (39)

I

Thus, term-by-term integration of the series (37) yields

In2-Cle, P)

= In{w4 P) — % [w;l + aw_]

l—axl
- i1 )
+ 520 ;k{w“L +(aw_)]
= In(w; P) —w_

1-«a 1
50 [In(l —wi ) +In(l- aw‘)]
l—a

=In(wyP) —w_ ~ In(1 —wi?)

1—-a

= éln(w.ﬂ’) —w- — In((wy — 1)P)

1—«a

= éln(erP) —w- + In(1 —w_). (40)

a

Both series in brackets converge because w > landaw_ < 1:
in fact,

(wy = Now-. —1) = 2—wy —aow_

_1\2
_u < 0.
wy

(41)
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