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Asymptotically Admissible and Minimax
Estimators of the Unknown Meant

Andrew L. Rukhin! Woo-Chul Kim?

ABSTRACT

An asymptotic estimation problem of the unknown mean is studied under
a general loss function. The proof of this result is based on the asymptotic
expansion of the risk function. Also conditions for second order admissibility
and minimaxity of a class of estimators depending only on the sample mean
are established.

KEYWORDS : Asymptotic expansion, Admissibility, Minimaxity, Second
order Bayes risk.

1. INTRODUCTION

Let z,,---,z, be a random sample from a distribution P whose mean y is un-
known. Here we assume that g is the only unknown parameter. We study the
point estimation problem of this parameter under a general loss function W (4, p).
Our goal is to investigate asymptotic admissibility (second order admissibility) and
asymptotic minimaxity of estimators which are smooth functions of the sample mean
z =37 z/n.

This problem has been studied mainly for the quadratic loss W (6, p) = (6§ — p)?
or for scaled versions of this loss (see Lehmann (1983) pp 258-259 for minimaxity
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results and Akahira and Takeuchi (1981) for asymptotically complete class results).
Asymptotic variance estimation was considered by Joshi and Rukhin (1990).

In Section 2 an asymptotic expansion of the risk function for such estimators is
obtained. It turns out that under mild regularity assumptions this quantity admits
an asymptotic expansion with the leading order n~! term which does not depend on
the estimator under consideration. The second order n~2 term is defined by a differ-
ential expression which can be treated as a new risk function with the corresponding
definitions and conditions of admissibility and minimaxity conditions being provided
in Section 3.

Similar asymptotic expansions for a loss function of the form W (y/n(§— u)) were

obtained by Chibisov (1973) and Levit (1982).

2. ASYMPTOTIC EXPANSION OF RISK FUNCTION

We consider here the estimators of x having the form
8(z1,- -, 2a) = T +9(2)/n (2.1)

where ¢ is a smooth function. Estimators of the form (2.1) (with z playing the role
of the maximum likelihood estimator ) were studied by Pfanzagl and Wefelmeyer
(1978) who showed that for any estimator §; not necessarily of this form there exists
6 such that (2.1) holds and R(8;, u)— R(é, 1) = o(n™!). As a matter of fact results of
this paper apply to a more general class of estimators of the form Z + ¢(Z)/n + €,(Z)
where ¢, is bounded and tends to zero faster than n=!.

Let X denote a random variable with distribution P so that

EX = p.
We make the following assumptions:
Al. Let my = EX* for k=1,2,---,5. It is assumed that
E| X < oo.
A2. The loss function W($é, i) is a unimodal nonnegative function of § with a unique
minimum at § = g. Denote W¥) () the k-th derivative of this function at
6 = p. It is assumed that these derivatives exist up to ¥ = 5 and the 5th

derivative is a continuous bounded function. Thus W(g) = 0 = W'(x) and
W@ () > 0.
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A3. The function ¢ is bounded and differentiable with continuous bounded deriva-
tive, and the risk function of (2.1) is finite.

The main object of our interest here is an asymptotic expansion of risk function

R(é,p) = EW (b, p)

where § is of the form (2.1). In the sequel we denote the variance of z; by ¢? and
by ¥ = ma/0® the standardized cumulant of order 3.

Theorem 1. Under Assumptions A1-A3 one has the following asymptotic ex-
pansion

R(6,p) =n~ 02W(2’(u 2+ n2[{g%(p) + 207" (1)} WP () /2
+{o?g(n) + 70”’/3}W(3)(# )/2 + U“W“)(N)/S] +o(n™?). (2.2)

Proof. With 2 = \/n(z — p)/o, the estimator of the form (2.1) can be written
as

b=p+n"Y20z+n""g(u+n"Y202).

It follows from the assumption A2 that W (4, p) can be expanded as follows;

W (s, 1) = WO () (6 — p)?/2+ WO (u)(6 — p)?/6
FWO()(6 — 1) /24 + cual6 — )%, (2.3)

with a uniformly bounded random variable ¢;,,. The assumption A3 also implies
that

g(p + 1 V2az) = glu) + 1" Vozg! (1) + cun 20z, (2.4)

with a uniformly bounded random variable c,, converging to 0 in probability. Fur-
thermore, it is well known (see, for example, Serfling (1980) p. 68) that

E|Z|* = 0(1) k=1,2,---,5, (2.5)

under the assumption Al.
Therefore it follows from (2.3), (2.4),(2.5) and A3 that

R(8,p) = n 2W D ()0 E(Z%)/2 + n=3 W) (u)o>E(Z°) /6
+n WO (w)a?g () E(Z%) + WP (u)g?(p)/2
+WE(p)atg(u) E(Z%) /2 + WO (n)o* E(Z*)[24}
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+o(n?),
which implies (2.2) by the relation between the moments and cumulants. 1

It i1s worth noticing that the leading term of the risk does not depend on the
estimator (2.1), and that the second order term has the form

(Lg)(u) = {g*(1) +20°¢" (1) }W B (1) + {o%g(p) + v0>/3}WE) ()
+atW W (u)/4. (2.6)

3. ASYMPTOTIC ADMISSIBILITY AND
MINIMAXITY

Theorem 1 shows that an estimator (2.1) is asymptotically better than
6o = T + ~go(Z)
if
(Tg)(#) < (Tgo)(p) (3.1)
with strict inequality for some p. In other terms &y is asymptotically inadmissible

within the class (2.1) if for some ¢g (3.1) holds for all g with strict inequality for

some u.
It is convenient to consider (2.6) as defining a general differential operator I'
defined on piecewise continuously twice differentiable functions g such that

(Tg)() = 2h(t)g(t) + 26(1)g'(t) + k(t)g*(t) + r(t) (3.2)

for some continuous functions h, ¢, k and r defined on some interval with end points
t and {. We assume throughout this section that k£ and ¢ are strictly positive. In
our main application to (3.1), we have

h=a!W® /2 (=0 W®? k=Ww®
and
r = 703W(3)/3 + 04W(4)/4

so that this assumption means that W (u) > 0. It should be noted that o2 and v
may depend on pu.
Declare a function g, satisfying A3 to be permissible if the inequality
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(I'go)(t) 2 (T'g)(¢) (3.3)

valid with some g, satisfying A3, for all values of ¢, implies that the inequality in
(3.3) becomes the equality for all t. In other terms go is permissible if it is admissible
for a new risk function (I'g)(x) with the decision space consisting of all piecewise
continuous twice differentiable functions of real argument t taking values in the
interval I = (¢,1).

We obtain now a necessary and sufficient condition of permissibility particular
cases of which were derived by Stein in his unpublished lecture notes on statistical
decision theory at Stanford University and by Ghosh and Sinha (1981) who were
mainly interested in the case gy = 0.

Theorem 2. Assume that the differential operator I' is given by (3.2) with

positive functions k and ¢. A function go is permissible if and only if for any (or
some) inner point s of interval / with end points ¢ and ¢

/jexp [— /st[k(y)go(?/) + h(y)]f_l(y)dy] k(t)/€(t) dt = oo

and

[ exe [ htw)ants) + hw)le ()] (2)/8(0) dt = oo

Proof. Notice first of all that if operator I is defined by (3.2) then the inequality
(3.1) can be rewritten in the following form

P2+ 2A) (1) < fE(8) + 2A() fo(t) (3.4)

where f(t) = g(t) + h(t)/k(t), fo(t) = go(t) + h(t)/k(t) and A(t) = £(t)/k(t).
Putting

f(t) = folt) + 6(t), and p(t) = ¢7'(t),
we have the following inequality equivalent to (3.4)

AYE) + 2fo() AT (1)p(t) — 20'(2) < 0. (3.5)

Now suppose that the first integral in the condition of Theorem 2 converges, i.e.,

/;A_l(t)exl){“/: fU(y)l—\"l(y)dy}dt =K < oo.

Then, equating the left hand side of (3.5) to —A~1(¢), one obtains a linear
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differential equation
P(t) = fo(t)ATH(E)p(E) + A1),

solution of which provides a strictly negative solution to (3.5). Solving this linear
differential equation in p one obtains

(t) = expd [ Fow)A" Wdules) + [ A7) expi= [ falwAT (w)du}dy].

Choosing now p(s) so that p(s) < —K we see that p(t) is negative for all ¢. If
the second integral in the conditions of Theorem 2 converges one obtains

o(0) = expd | foln) A" Wd}ols) — [ A7 @ expd [ folw)A™ (w)du}dy),

which provides a solution to (3.5) and can be taken to be positive.

Next, let us prove that if inequality (3.5) has a nontrivial solution then one of
the conditions of Theorem 2 must fail. Assume first that ¢(s) < 0. Define

t; = min(inf{¢ : ¢(¢) > 0}, ).

Then ¢(t) is negative if s < t < t; and one can proceed as before to derive the
following inequality with a nonnegative function z, which in fact is —A times the

left hand side of (3.5),

0> (t)exp{~ [ ' foly) A (y)dy)
= o)+ [+ @)A W exp{~ [ folw)A ™ w)du}dy/2
> pls) + [ A7 @) expl [ fo(wA™ (wdu}dy/2. (3.6)

If ¢, = 7 this completes the proof. If t; <t continuity of ¢ implies that

lim p(t) = —o0

t—i;

which contradicts (3.6). The situation when ¢(s) > 0 is treated similarly. 1

It is instructive to contrast Theorem 2 with the Stein (1955) condition according
to which any admissible procedure must be approximable by Bayes rules. What
is the form of a Bayes procedure if the risk is defined by differential operator I' ?
Let A(t) be a smooth prior density with compact support which vanishes at the
end-points of /. Integration by parts establishes the following formula
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JEDOMd = [{=2(60M0)5(2) + MO () + 2h(1)g(t) + (1))}t

which can be regarded as the second order Bayes risk by (2.6). Therefore the rule
g = g» which minimizes this second order Bayes risk has the form

_ @A) = h(H)A(E)
k(H)A() '

(3.7)

The resulting estimator (2.1) with ¢\(Z) can be regarded as the second order
Bayes rule. Limits of functions of form (3.7) have the same form with ) being a
positive function. Theorem 2 can be interpreted as follows: function go of form (3.7)
1s permissible if and only if

/gz it = /ezk(tm = co. (3.8)

Indeed it follows from (3.7) that with some constant C
t
Mt) = Cexp{ [ Ik(w)go(n) + hly)le~ (v)dy (1),

Note that condition (3.8) resembles the Zidek’s (1970) admissibility condition in
the classical estimation problem.

For example the traditional estimator z of the unknown normal mean under loss
function W is asymptotically admissible if and only if

t s
/(W(2’(t))‘1/2dt - / (W (£))"V2dt = oo. (3.9)
s ¢
Here we used the facts that in this problem
) = a?W(t) = 6%k(t)

and

so that this result follows from Theorem 2 as permissibility condition for go = 0.
Brown (1988) obtains a representation which generalizes (3.7) to operator I
defined on vector functions g(t),t € RP

I'g =2Dg + f - Bg.

Here D is the first order linear differential operator
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0
Dg=) aigi+. ij oY
J

with continuously differentiable functions a; and a,;, and a positive symmetric defi-
nite matrix valued function B. The argument as above shows that any permissible
g has the form similar to (3.7).

Brown also proved that a function g is permissible in this situation if and only
if there is a sequence A, k = 1,2, ... of nonnegative functions such that

A =1 It < 1,
A =0 IIt]l > &,
re = [(A(VAg)) - BTYAVALfdt — 0 as k — oo,

where A is the matrix formed by function a;;. The quantity r, here plays the same
role as the difference of posterior risks in the classical admissibility proofs (cf for
instance Stein, 1959).

Assume now that W (u)o? = const, i.e. the leading term in (2.2) is parameter
free. Then the estimator 4, is asymptotically minimax (second order minimax) if

sup(lgo)(t) = inf sup(Tg)(t). (3.10)

The next result is an analogue of the classical minimaxity condition (see Leh-
mann, 1983, p 256) for a function go.

Theorem 3. Suppose that A,,,m = 1,2,... is a sequence of differentiable prior
densities which vanish at the end-points of interval I and such that

_ B E)/ An(t) + () — R(H]?
k(1)

sup(Tgo)(®) < limsup [ An(®)| /(1) d.

Then go is minimax in sense (3.10).

Proof. For any g from the domain of I' and any fixed k& because of (3.7)

sup(Cg)(t) 2 [(To)(PAn(t)dt 2 [ (Dgn, )()Am(t)d

= [t - B2 L 2O = MOP

Hence

Sttlp(l“go)(t) < sgp(Fg)(_t)
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and g, is minimax. i

Returning to the normal example observe that estimator 7 is asymptotically
minimax if [ = R', W®(u)o? = w, WO(u) = 0 and W®(4) = const. Indeed this
fact follows from Theorem 3 with \,, being normal densities with variance m. The
example of linex loss function

W(é,n) = exp{a(éd~ p)} — (6~ p) — 1

with o # 0 shows that if for instance W®)(u) # 0 then estimator Z may not be
minimax for any sample size (see Rojo, 1987 and Sadooghi- Alvendi and Rematollah,
1989). This estimator is asymptotically admissible if I = R! because of (3.9).
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