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INVITED PAPER

MULTIVARIATE ANALYSIS FOR THE CASE
WHEN THE DIMENSION IS LARGE COMPARED TO
THE SAMPLE SIZE!

YASUNORI FuJiKosHI!

ABSTRACT

This paper is concerned with statistical methods for multivariate data
when the number p of variables is large compared to the sample size n. Such
data appear typically in analysis of DNA microarrays, curve data, financial
data, etc. However, there is little statistical theory for high dimensional data.
On the other hand, there are some asymptotic results under the assumption
that both n and p tend to oo, in some ratio p/n — ¢. The results suggest
that the new asymptotic results are more useful and insightful than the
classical large sample asymptotics. The main purpose of this paper is to
review some asymptotic results for high dimensional statistics as well as
classical statistics under a high dimensional asymptotic framework.
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1. INTRODUCTION

In many important statistical applications we have encountered multivariate
data such that the number p of variables is larger than the number n of samples.
In general, the terminology of high dimensional data is used for a set of data
where the number p of dependent or independent variables is large compared
to the number n of samples. Such data appear typically in analysis of DNA
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microarrays, curve data, financial data, etc. However, it may be noted that there
is little statistical theory of high dimensional multivariate data.

One of the approaches for high dimensional multivariate data is to extend
classical methods to the corresponding modified methods. The other approach is
to consider methods for reducing the variables used by deleting a set of redundant
variables or constructing a set of useful combined variables. It may be noted that
even in the latter approach, we might have a set of multivariate data where the
number of variables used is relatively large compared to the sample size.

On the other hand, there are some asymptotic results under a high dimen-
sional framework such that both n and p tend to oo, in some ratio p/n — c.
We denote such asymptotic as (n,p)-asymptotic, and denote the large sample
asymptotic as (n)-asymptotic. Through some (n,p)-asymptotic results, it may
be noted that such new asymptotic results are more useful and insightful than
the classical large sample asymptotic results.

The main purpose of this paper is to review asymptotic results of some statis-
tics for high dimensional statistical procedures as well as classical statistical pro-
cedures under a high dimensional framework. In Section 2 we consider MANOVA
tests. In Section 3 we consider some discriminant functions. In Section 4 we con-
sider test statistics for covariance matrices. The distributions of eigenvalues for
sample covariance matrix and MANOVA matrix are considered in Section 5.

2. MANOVA TEsTS

2.1. Test statistics

Let Y be an N X p observation matrix which is obtained by independently
observing a p dimensional variate y = (y1,...,yp)’ for N subjects. A multivariate
linear model for Y is expressed as

Y = A® + &, (2.1)

where A is a known N X k design matrix with rank(A) =k, ©® is a k x p unknown
parameter matrix, and £ is an N X p error matrix. It is assumed that the rows
of € are independently distributed as N,(0, X). For testing

Hy . CO =0ws. H: CO #0,
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let S, and S, be the matrices of sums of squares and products due to the hy-
pothesis and the error defined by

S, = (COY {Cc(A’A)"'C'} ' €8,
S. = (Y - A®) (Y — A®),

respectively, where C is a ¢ X k known matrix with rank(C) = ¢, and 0 =
(A'A)"'A’Y. Then S, and S, are independently distributed as a noncen-
tral Wishart distribution Wy(¢, ¥; MM') and a central Wishart distribution
Wy(n,X), where n = N — k, and M is a p x ¢ matrix such that

MM = (CO) {C(A'A)"'C'} ' C®.

Under the assumption that n > p, the following three well known statistics have
been used:

(i) Likelihood ratio statistic :

|
-1 =1 1+¢))
o (rat o) el

(i1) Lawley- Hotelhng trace Crltermn :

tr (S,S; " zej,

(iii) Bartlett- Nanda—Plllal trace criterion :

tr {Sh(Se + Sp)”

_ J
= 1-{-€j

where ¢ = min(p, q) and £; > --- > £; > 0 are the non-zero eigenvalues of S;S_!.
When we consider the distributions of the above invariant tests, without loss
of generality we may assume that

Sh=2Z', Z~NpoZ7V*M,I,®1,), S.~ Wy(n,I,). (2.2)

The following lemma by Wakaki et al. (2003) is fundamental for deriving
asymptotic distributions of the three test statistics under a high dimensional
framework.

LEMMA 2.1. Let

B =ZZ' and W = BY?(ZA~'Z')"'B'/2
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Then B and W are independently distributed as a noncentral Wishart distribution
W,(p, 14, Q) and a central Wishart distribution Wy(m,1,), respectively, where
m =n — p+ q and the noncentrality matriz £ is given by

Q=Mz M. (2.3)

Note that the non-zero eigenvalues of ShSe_1 are equal to the ones of BW ™1,
Therefore, the three statistics can be represented as

@ S _ Wl
[Se +Su]  |W+B]’

(ii) tr (SpS;1) =tr (BW_l) ;

(i) tr {Sh(Se+Sp)~'} =tr {B(W+B)™'}.

Here the statistics can be represented in terms of independent Wishart ma-
trices B and W of size ¢ x ¢.

2.2. Null distributions

Our interest is to consider asymptotic expansions of the null distributions of
the above three statistics under (A0):

(A0) ¢ : fixed, p/n = c€ (0,1). (2.4)

This assumption implies that m = n — p + ¢ also tends to infinity. For the LR
statistic, there are some works. It is known (see, e.g., Anderson, 1984) that
|Sel/ISe + Spl is distributed as a Lambda distribution A, ,,. Mudholkar and
Trivedi (1980) have proposed a normal approximation. Their idea is to improve
an approximation by a power transformation such that a leading term in an
expansion for skewness of transformed statistic vanishes. The saddlepoint ap-
proximations have been proposed by Srivastava and Yau (1989). Tonda and
Fujikoshi (2003) obtained an asymptotic expansion of the null distribution of the
LR statistic by using the property of Apgn = Agpnptg-
Let

Tir = —/p (1 + %) {log IS_LSJ;|T:I +qlog (1+ ,—%)}
Trn = ﬁ{%tr (snS: ) fq}, (2.5)
bep:V@(L+%)[<L+%>m{SASW+&J4}—q}
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Then we can treat the three statistics as T (G = LR.LH and BN P) in a unified
way. Expanding T in terms of

1
U=.p (lB — Iq> and V = /m (—W — Iq> ,
P m
we can write the characteristic function of T as
. L. N _ .
Cre(t) = exp {q(1 + r)(it)*} {1 + % (ithy + (’Lt)'gbg)} +0(ph, (2.6)

where r = p/m, by = q(g+ 1) {c(1+7)+r}and by =4q(1 +7){c(l +7)+ 7} +
4q(1 — r?)/3, with ¢ = —p(m +p)"1/2, 0, —p(m +p)~! for G = LR, LH and
BN P, respectively.

By inverting (2.6) we obtain an asymptotic expansion of the distribution
function of T¢; as in the following theorem (Wakaki et al., 2003).

THEOREM 2.1. Let Ty be the transformed test statistics for G = LR, LH
and BNP defined by (2.5). Then

1 I (1 1 9 1
Pr (370 <) = 00) = ot = { S+ 5ol =)+ 07
where ® and ¢ are the distribution and the density functions of the standard
normal distribution, o = \/2q(1 4+ 1), and b;’s are given in (2.6).

From the above theorem we obtain Cornish-Fisher expansion of the upper

percent point of the distribution as in the following corollary.

COROLLARY 2.1. Let z, be the upper 100(1 — a)% point of the standard
normal distribution, and let
b3

1 [b
zo(a) = zo + ﬁ{;l+(z(2x - 1)03}.

Then

1
Pr <;T(,~ < z(,((y)> =1—-a+0@p").

The terms of O(p~') in Theorem 2.1 and Corollary 2.1 have been also ob-
tained. For numerical accuracy of the expansions. sce Wakaki et al. (2003).
Tonda and Fujikoshi (2003). ete.
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Now we shall examine a relationship between (n)- and (n,p)- asymptotics.
For example, we have that for Lawley-Hotelling trace criterion tr (Sh Se_l),

1 .
7 {mtr (ShS;l) ~pq} N N(1,2¢(1 + 7)) : (n, p)-asymptotics,
p

where —25 denotes convergence in distribution. On the other hand, first consider
asymptotic distribution under the large sample framework such that n tends to
infinity and p and ¢ are fixed, and then consider asymptotic distribution of the
resultant result when p tends to infinity. Then we have

1 _ D 1 2 .
— {mtr(SpS; 1) —pg} = — (x2, — pq) : (n)-asymptotics,
\/ﬁ { ( e ) } \/]_) ( pq ) (

1

D -
= (ng —pq) - N(la 2(1) : (p)-asymptotlcs.

VP

The final results in the two approaches are different in variances 2¢(1 + r) and
2¢ in their asymptotic normality. So, if r = p/(n — p + q) is large, the difference
becomes large. In other words, the existing (n)-asymptotics break down when p
goes to infinity with n.

2.8. Non-null distributions

Note that the noncentrality matrix 2 depends on n and p. It is natural to
assume that

(B0) @ = O(p), (2.7)

which is equivalent to £ = O(n) under our high dimensional framework. Let

™m S| P 1
T =—upl14+ )1 i eel(1+ 2V, + —0
LR ‘/ﬁ<+p){0glse+3hl+og'<+m>q+m ’}

T}y = \/ﬁ{%tr (ShS;1) — tr <][q + %n) } , (2.8)

Tiwp=vp(1+ %) [ (1 + %) tr {Sh(Se +Sn) ™'}
1

) )

Then. we have the following result (Wakaki et al.. 2003).
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THEOREM 2.2. Let T(, be the transformed test statistics for G = LR,LH
and BN P defined by (2.8). Then, under the assumptions (A0) in (2.4) and (BO)
in (2.7),

7% 25 N(0,0%7),

where G = LR, LH, BNP, and
X —2(14+dg) ) 1

it =l et e e ).
and dg =0,-1,1 for G = LR, LH, BN P, respectively.

From this theorem we can obtain asymptotic results of the powers of the three
tests.

COROLLARY 2.2. Let Bg be the power of test Ty with significance level . If

Q= O(yp),

1 1
lim Bg=® | ———tr (-—Q) - 2a ] .
n,p—)ooﬁ ( 2q(1 + ) VP
Further, if the order of 2 is larger than /p, the asymptotic power is one, while
if the order of 2 is smaller than \/p, the asymptotic power is a.

2.4. Test for high dimensional data

When n < p, S, becomes singular, and it will be impossible to use the clas-
sical statistics. For such cases, a non-exact test was first proposed by Dempster
(1958, 1960) for one and two sample cases. The statistic may be generalized
as tr(Sy){tr(S.)} !. For high dimensional asymptotics of tr(Sp){tr(S.)} ' we
assume that

(A1) i—tr(Ek) =0(1), k=1,2. (2.9)
(BI) %tr(Ekﬂ) —0(1), k=1,2, (2.10)

where @ = 2 Y/2MM’'E~Y/2. Consider a transformed statistic defined by

r(S (20
ThH = \/ﬁ{n%}%% —-—q— ttf‘ég) } ) (2.11)
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Let

u = %{tr(sh) — qtr(X) — tr(QZ)} and v =

- {tr(Se) - ntr(E)}.

1
J/p
Then, it is seen that v and v are asymptotically independently distributed as
N(0, 03) and N(0,02), respectively, where 02 = 2qp~'tr(X?) +4p_1tr(22f]) and
02 = 2p~1tr(%?%). Expressing T}, in terms of u and v, Fujikoshi et al. (2003b)
obtained the following result.

THEOREM 2.3. Let T}, be the transformed test statistic defined by (2.11).
Then, under the assumptions (A0) with ¢ >0, (A1) and (B1),

T -2 N(0,0%2),

0’ = {%tr(E)}_z [Qq {%1;1“(22)} +4 {%tr(zﬁﬁ)}} .

In particular, under the hypothesis

where

T = \/ﬁ{nzig")) - q} Dy N(0,0p2),

op? = 2q{§)~tr(2)}_2 {%tr(EQQ)} .

COROLLARY 2.3. Let Bp be the power of test Tp with significance level . If

Q= O(yp),
_ 1 tr(2Q)

Further, if the order of § is larger than |/p, the asymptotic power is one, while
if the order of §¥ is smaller than |/p, the asymptotic power is a.

where

Note that tr(€2) = tr(€2). Therefore, from Corollaries 2.2 and 2.3 we have

tr(ﬂ ) = lim B¢ > lim fp,
)

(2
V1 /t np—oc’ n,p—0o0

tr (€3 56)
= lim fg < lim Gp.
n.p—oc

\/‘ \/——— n.p—oc
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For example, if ¥ = al, (a: constant), lim, p o Bo < limy pyoc Bp. Further. if
p 18 near to n, Tp is more powerful than T¢;.

It may be noted that Theorem 2.3 and Corollary 2.3 hold if the assumption
p/n = ¢ € (0,+00) is replaced by n = O(p?) with 0 < § < 1. Further, for
a practical use of the asymptotic result of Tp we need to estimate a%. It is

suggested to use
oy tr(88) - noH(ix(S.))?
N CICRE

which is a (n, p)-consistent estimator (Srivastava, 2003).

2.5. Some other results

When n > p, the LR criterion for testing a linear hypothesis is based on
t

|Se| 1
A= =TT +e) L,
ISe‘+‘Sh| ]1;[1( ])

where t = min(p,q), and £, > --- > £ > 0 are nonzero roots of SpS;!. When
n < p, Se becomes singular. Srivastava (2003) proposed to use

t
At =T +d),
j=1

where £ = min(p, q), di > --- > d; > 0 are nonzero roots of S,S}, and S} is the
Moore-Penrose inverse matrix of S.. Consider a spectral decomposition

S. =HMH',K HH =1, M = diag(my,...,mg), m; > - > myg > 0.

Then, the Moore-Penrose inverse matrix is defined by S = HM™'H'. Some
distributional results have been studied by Srivastava (2003).

In canonical discriminant analysis, it is important to decide the number of
useful canonical discriminant functions which is defined by rank(€2). For testing
the hypothesis

Hy : rank(2) =k

the following three statistics have been proposed:

q g9 q .
(i) log JT (1) (i) Y b (i) D 1iflj'

J=k+1 j=k+1 j=k+1

Fujikoshi et al. (2003a) derived high dimensional asymptotic results as in Sections
2.2 and 2.3 for the above dimensionality tests. For the null distributions, see also

s

Section 5.3
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3. DISCRIMINANT FUNCTIONS

We consider a discriminant problem of classifying a p x 1 observation vector x
as coming one of two normal populations II; : N(u;, X) and Iy : N(u,, X). Here
all the parameters p,, ;o and 3 are unknown. Suppose that random samples of
sizes N, and Ny are available from II; and II,, respectively. Let X;,%X> and S be
the sample mean vectors and the pooled sample covariance matrix. Further, let
A and D be the population and sample Mahalanobis distances. Let

N=Ni+Ny, n=N-2, m=n-np.

8.1. The casen > p
When n > p, there are two typical classification statistics W and Z defined
by
< . Va—1 1 _ =
W = (x; —%2)'S {x - §(x1 +x2)} and
7 =ay(x — X9)/S7Hx — Xy) — ay(x — %1)'S7(x — %1),

respectively, where a; = N;/(N; + 1), © = 1,2. The rule is usually to classify
x as coming from [ it W > 0 (or Z > 0) and from Ily if W < 0 (or Z < 0).
One of the important problems on the classification procedures is to evaluate the
expected or unconditional probabilities of misclassification (EPMC), i.e.,

eT(2' 1) = PI‘(T < 0|X S Hl),
er(112) = Pr(T > 0| x € IIy),

where T = W or Z. The two discriminant functions W and Z can be treated in
a unified way, by considering the discriminant function defined by

T= % {(x = %2)'87 (x — %2) — b(x = %1)'S7 (x — x1) },

where b is a constant. The rule is to classify x as coming from II; if 7 > ¢ and
from I, if T < ¢, where ¢ is a constant, particularly ¢ = 0. The important special
cases are given by putting b as follows.

Wifb=1,T=W; @@)ifb=aa;’, T= Loz
2 2

2
We assume the following asymptotic framework:
. p ) - . 202 .
plglolc N~ Adi{<1),i=1. 2, PIS&A = dy. (3.1)
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Using that T can be expressed as a function of several independent normal and X2
variables, Fujikoshi and Seo (1998) obtained asymptotic distribution of 7' under
the assumption (3.1) whose special case can be stated as in the following theorem.

THEOREM 3.1. Suppose that x comes from I1;: Np(p;, ), 1 = 1,2. Then un-
der (3.1), W and Z/2 are asymptotically distributed as N(Cé;?, o?) and N(C(ZL),JQ),
respectively, where

o _1( N 24 P v - Ny Y =102
CW’ _2<N*p> {A +N1NQ( ) ( 1 Z) y ¢ IS

W _ @1 N A
2= 2<N—p> ’

N \? N
2 2 D
= (N—p) (A +N1Nz>‘

COROLLARY 3.1. Under (3.1) the EPMC’s for W and Z are asymptotically
evaluated as follows:

limew (2] 1) = (1), limew (1]2) = (1),
limez(2]1) = ®(v}"), limez(1]2) = ®(+2),

where

; 1/N-—p\Y2( . :
W= (—N—p) {A2+ S (D) —Nz)},

NlNQ
~1/2
2 pN .
x <A +——~N1N2> , 1=1,2,
1/2 —1/2
m_.@__L(N-p 2 (a2, PNV
Tz =z 2( N > A( N, '

In a special case Ny = Ny we obtain

AP =2 = (k_@) o (N’ + ﬂ) -
/ 2 N NNy
which was proposed by Raudys (1972).

For high dimensional asymptotic approximations of ¢(2|1), it may be noted
that there are some earlier works by Deev (1970), Raudys (1972), etc. Thier
asymptotic approximation proposed for Ny = N» has been compared with the
classical asymptotic approximations by Wyman et al. (1990). For an extension
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to the case Ny # Ny, see Fujikoshi and Seo (1998). The comparison shows that
the high dimensional approximations are also extremely accurate. Saranadasa
(1993) proposed an approximation for ez(2]1) which is different from the one as
in Corollary 3.1.

For a practical use of Corollary 3.1, we need to estimate A2 Tt is recom-

mended to use ! N
D2 — n—p— D2 . p
v n N1N2

which is unbiased and consistent under ocur framework.

3.2. Error bound for asymptotic approzimations

Lachenbruch (1968) has proposed the approximations for ey (2|1) and
ew(1|2), which are expressed as

ew(21) 2 3(1\Y), ew(1]2) ~ ®(+1Y), (3.2)

where for i =1, 2,

@ 1 m(m — 3) 1/2
o ‘5{<n—1><m—1>}

2 D 1yitl _ 2
X{A +N1N2( 1) (Nl NQ)} (A +

pN ~1/2
NiN, '

The approximations were proposed, without considering their asymptotic prop-
erties. In fact, he proposed them by substituting their expectations to the mean
and variance in the conditional normality. From Corollary 3.1, the above approx-
imations can be justified as the asymptotic results under (3.1).

In this section we are interested in deriving their error bounds whose orders
are the first order with respect to (Nfl,NQ_I,p’l). Suppose that x belongs to
II;. Then we can express W as

w=v-1%2Z -y, (3.3)

where
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Here Z is distributed as N(0,1). and Z and (U, V) are independent. Therefore
we can write

6“'(2l 1) = P(W <0 ‘ X e Hl)

= By {(I)(V‘I/QU)}. (3.4)
Note that
BO) = gt {2+ B g s )
_ n?(n —1) Np |
EV) = m(m — 1)(m — 3) {A2 * NlNg} = v (m>3),

and hence 'y(Ll) = E(V)~Y2E(U). Therefore, the first approximation in (3.2)
can be regarded as the one obtained from (3.4) by substituting (E(U), E(V)) to
(U, V), i.e.

® (72”) — & ({E(V)}—WE(U)) . (3.5)

More precisely, first we consider approximating ®(v~1/2u) by its Taylor type
approximation at (u,v) = (ug,vg) up to the first order and to evaluate its re-
mainder terms which are the second order with respect to (u — g, v — vg). Then,
we consider taking the mean of resultant inequality with respect to (U, V).

The variances of U and V are given as follows:

n? 1 2(n—-1) Ny — N,
\% = i Mt Ay, N —_—
ar(U) 2m(m — 1)(m — 3) {m — 1A * mNoy {1 * (m—-1)N; }

2n—1p [ 1 (N; — Np)?
dp-pg L, Wzt L 5
TN, {m T m - )N m=3>0

Var(V) = 2n — 1)n’ [1{1+ 8(m —4) }

m(m — 1)2(m - 3)2 |m (m —5)(m — 7)

x{p_l Az y PN >2+N(n_3) <2A2+—Zﬂ)}

™m NN, NN, NIV,
4(n—1)(m—4) 9 pN 2
+m(m —5)(m ~17) AT+ N; N2 . m~T7>0.

THEOREM 3.2. The error when we approrimate ey (2| 1) by @(721)) 18
bounded by B. i.e..

lew211) - @(+{")] < B. (3.6)
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where
_ ~1 -2 i —-3/2 . 1/2
B = Baovy Var(U) + By vy “Var(V) + f2.1v, ' “{Var(U) - Var(V)} /<.

and the constants (5 ; are given by

1 1 1 1 2
B2o = §h1» Ba1 = §h2, B2 = 2 ( 1+ h + 5\/h3> .

Here hj = sup|h;(z)¢(z)| and hj(z) is the j** Hermite polynomial.

Note that the order of B is O}, where O;f denotes the jt* order with respect
to (N7 1, N, ',p~1). Tt has been also proved (Fujikoshi, 2000) that the constants
Bi,; may be replaced by their improved constants,

/5)2,0 =0.121, BQ,I =0.2, ,32,2 = (.5.

3.8. The case p > n

When p > n, the classical discrimination rule becomes inapplicable since S
is singular. As one of the approaches for the case, Saranadasa (1993) proposed
a method to look at the classification problem in terms of one way MANOVA
problem. The method is to classify a new observation by minimizing a suitable
norm of the matrix of sums of squares and products due to within groups. Let E;
be the new matrix of sums of squares and products due to within groups when x
+ is placed in II;. Then

E; =nS + a;(x — X1)(x — %1)".
- Using trace criterion, we may classify x into II; if
tI‘(El) < tr(Eg).

This is equivalent to the classification procedure based on the classification statis-
tic defined by

T:al(x—il)'(x—il)—ag(x—ig)'(x—ig). (37)

Saranadasa (1993) obtained asymptotic expansions for ep(2]1) and ep(1/2) by
expressing 7" as a sum of p independent but not necessarily identically distributed
random variables. Tlhe leading terms are given as in the following theorenr.
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THEOREM 3.3. Let T be the classification statistic defined by (3.7). Then,
for large p,
er(2/1) = @(+f"),  er(1]2) = &({).
where
’)’é«l) _ az(py = po) (k1 = o) 7
2V(1 = 102)0r(Z2) + aa(pg — po) Ty — o)

and 7(T2) is defined from V(Tl) by substituting ay for a.

Along the idea of regularized discriminant analysis due to Friedman (1989).
Loh (1997) studied an adapting discriminant function defined by

W)\ = ()_(1 — )_Cg)l(s + )\I)Ml {X — %(il + )_CQ)} R (38)

where A = A(X1,%2,S) and A is a smooth function. Some large sample properties
have been obtained, but its high dimensional properties have not been studied.

4. TESTS FOR COVARIANCE MATRIX

4.1. Preliminaries

Let S be the sample covariance matrix based on a sample of size N =n + 1
from N,(u,X). We consider two common testing problems for the covariance
matrix X: (i) the covariance matrix X is equal to the identity matrix I; (ii)
the covariance matrix X is proportional to the identity matrix (sphericity). The
identity in (i) can be replaced with any other given matrix 3g. For each testing
problems, we have the likelihood ratio test statistics and the other tests based on
quadratic forms of the eigenvalues of S.

Our interest is to consider asymptotic properties of these tests for the situ-
ations where (1) n > p, but p is relatively large, and (2) p > nor p > n. It is
assumed that

(C0) % — ¢ € (0. +00). (4.1)
If ¢ > 1, S becomes singular. So, we cannot use the likelihood ratio tests since
they depend on [S|. In addition to the assumption (CO0), we use the following
assumptions:

(C1) })tr(}:k) =0O(). k=1.2.

(C2) })n-(}:’f) =0(1). k=31
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Let A\; > --- > X, be the eigenvalues of £, and let

1 1<

> hi=a =Y (h—a)? =0
P

Then p~1tr{(Z - I)?} = (« — 1)? + 6%
Note that nS is distributed as a central Wishart distribution W,(n, ¥). Then
the following two lemmas were given in Ledoit and Wolf (2002).

LEMMA 4.1 (Law of large numbers). Under Assumptions (C0)-(C2),

1 P
(1) Sex(s) > e

) %tr(SQ) Ly (14 0)a? + 82,

where 2 denotes convergence in probability.

LEMMA 4.2 (Central limit theorem). Under Assumptions (C0), (C1), if
52 =0, then

—tr(S) 0
nx | pn+p+1 D, N ’ Y11 712
~tr(8?) - ————a? 0 Y21 Y22

p n

D e
where — denotes convergence in distribution, and

=2 yep=ya =41+cHa®, v =42c" +5+2)a’.

4.2. Testing problem (i)

For testing
H1:2=IP’US“ Kl:E#Ip,

we have two typical test statistics given by
—2log LRy = ntr(S) — nlog|S| — pn,
1 2
T = —tr{(S—I ) }
P P
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where LR is a modified LR criterion. The first statistic —2log LR, can be used
only for n > p, while the statistic 77 can be used for any p and n. It is easy to
see that under the null hypothesis

D 2 . ]
nly —p— ;X;(pﬂ)ﬂ —p : (n)-asymptotics,

2 D .
5X12)(p+1)/2 —p —> N(1,4) : (p)-asymptotics.
Ledoit and Wolf (2002) studied asymptotic behaviors of T; under the assumptions

(C0)—(C2): They showed

T Ly ca? + ( — 1)2 + 6% : (n, p)-asymptotics,

nTy —p D, N(1,4+8¢) : (n,p) -asymptotics.

These imply that (1) the existing n-consistency of T does not extend to (n,p)-
consistency, and (2) the n-asymptotic distribution of 77 breaks down when p goes
to infinity with n. As one of the test statistics overcoming these weak points,
they proposed a modified statistic defined by

S.I“ﬁ

2
T, = %tr{(s ~1,)?} - -71: {%tr(S)} +

Wakaki (2003) has obtained asymptotic expansions of the null and nonnull
distributions of the modified likelihood ratio criterion A = LR; under a high
dimensional framework (C0) with 0 < ¢ < 1. It is well known (see, e.g., Anderson.
1984) that the characteristic function of log A is expressed as

E{exp(itlog\)} = E(\Y)
— PMAD, (1 +it)/2) {Tp(n/2))}
X |1, + itz | T2 g/,

where T'p(a) = nPP~U/4TTP_ T(a~(i—1)/2). Therefore, the cumulant generating
function of 2n"!log X is expanded as

K(t) = log E{cxp (2n 'itlog \) }

. 1. 1, .
= lt:u'n + §(Zt)20121 + E(Zt)373,n + -
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where

n
Hn = p10g2 + 10g|2| - tI‘(E) + wp (5) >

, 2 2
o= (5)- Ep+—tr{(2—1p>2},

2
= ()= (-2)
xtr [ SR {5~ k(k —1)—11p}], k=34,...

Here 1) is the digamma function defined by

d =/ 1 1
¢(a) = % logF(a) =-C+ Z (H—k — m) = O(loga).
k=0
Note that
5)(a S DA _y L1
(02 ;}mﬁ (@), vpla) —Jz:;w(a ;U - ))

THEOREM 4.1. Under Assumptions (C0)-(C2), the distribution function of
LR, can be expanded as

2n~! ~ bn
Pr( Hog LI — Sz):@(I)—évn,3¢(x)<x2—1)+0<n“2>-
n

Wakaki (2003) noted that the new approximation is more accurate than the
classical y2-type asymptotic expansions.
4.3. Testing problem (ii)

For testing
Hg:E:UzIP vs. Ko : 2;&021,,,

we have two typical test statistics

P
—2log LRy = n [log {ltr(S)} — long|] )
p

i {{w—ir(‘s“) - IP}T '

It has been shown (Ledoit and Wolf, 2002) that 75 is (n,p)-consistent, and its
(n)-asymptotic distribution remains valid if p goes to infinity with 7. even for the

I

T3

case p > n.
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Wakaki (2003) has studied asymptotic distribution of the null distribution of
—2log LRy under the assumptions (C0)- (C2) with 0 < ¢ < 1.

5. DISTRIBUTIONS OF EIGENVALUES

5.1. Spectral distribution

Let 1 > -+ > £, be the eigenvalues of a p X p symmetric matrix S. Then the
spectral distribution of the matrix S is defined by

Fula) = 24t 4 < a) (5.1)

where #{-} denotes the number of elements of the set { }. If the empirical dis-
tribution function F,(z) converges to F', then F is called the limiting spectral
distribution (LSD) function of S.

Let S be the matrix defined by

1 n
/
S=- E XiXj5, (52)
n 4
J=1
where x; = (z1j,...,Zp;) and z;; are #d random variables with mean 0 and
variance o”.

In spectral analysis of high dimensional random matrix the sample covariance
matrix is defined by (5.2), not by S = n~! Z?:l(xj — x)(x; — X)’. This is not
essential under the assumption of normality, but is essential under the assumption
of non-normality.

The LSD of S was first obtained by Maréenko and Pastur (1967). Subsequent
work was done by Jonsson (1982), Yin (1986), Bai et al. (1987), etc. For a review
of LSD, see Bai (1999).

THEOREM b5.1. Let Fy, be the spectral distribution of the sample covariance
matriz defined by (5.2). Under the assumption that p/n — ¢ € (0,1) as p — oc.
Then

Fy =% F,

a.s.
where == denotes almost surely convergence,

sV {(z—a)b—x), a<z<b.

otherwise.

1
flr) = E{—F;(—I—) =< 2mcro
dx 0.
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and the constants a and b are given by a = (1 — \/c)?0? and b = (1 + /¢)?0?,
respectively.

The LSD is useful in obtaining asymptotic behavior of a symmetric function
of the eigenvalues of S. In fact, we have

T, = {000+ + 6(6)
= /Ooo d(z)dF, (z). (5.3)

Then, under appropriate regularity conditions we can see that T;, converges to

/0 ~ o(x)dF (z) (5.4)

under a high dimensional framework.
Let S; and S, be independently distributed as Wishart distributions
Wp(m,I,) and Wpy(n,I,), respectively. Assume that

1
1 —+¢ >0 and 4 — ¢y € (07 -) . (55)
m n 2

Then, the LSD of F = $1S;' was also studied by many authors. Bai (1999)
extended the result to a non-normal case.

5.2. The mazximum eigenvalue

In this section we consider asymptotic distribution of the maximum eigenvalue
¢, of S. Under certain condition on moments, Geman (1980) showed the almost
sure (a.s.) convergence given by

n~H 25 (1 + e)?,

that is, £, ~ (v + /p)?. The result was generalized by Yin et al. (1988) under
the assumption that the entries of X have finite fourth moment.

Suppose that the entries of X are independently distributed as N(0,1), and
hence nS is distributed as Wp(n,I,). Then, the limiting distribution of ¢; was
derived by Johnstone (2001). The center and scaling constants are defined by

Hnp = (V n—1+ '\/ﬁ)Qa (5.6)

1 L\
onp—(\/n—1+\/f))<\/n__l.+ﬁ) : (5.7)
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The limiting distribution function is defined by

1 o0
Fi(s) = exp [—5/ {q(z) + (z — s)¢*(z) } dz|, sE€ER,
8
where g(z) solves the Painlevé II differential equation

¢"(z) = wq(z) + 2¢°(x),
g(z) ~ Ai(z) as z — +00

and Ai(z) denotes the Airy function. The final result is given as in the following
Theorem 5.2.

THEOREM 5.2. Suppose that nS is distributed as Wy(n,I,), and let ¢, be the
mazimum eigenvalue of S. Then, under that p/n — ¢ € (0,1],

néy — D
w) = ——-—ﬂl—e — Fy.

Cnp
The limiting distribution function is complicated, but the function has been
numerically evaluated.

5.3. The eigenvalues in MANOVA

Let S, and S, be the matrices of sums of squares and products due to
the hypothesis and the error in a MANOVA model. Further, we assume that
S, and S, are independently distributed as a noncentral Wishart distribution
Wp(g,2; MM') and a central Wishart distribution Wy(n, 2), respectively. Let
£y > -+ > 4 > 0 be the non-zero eigenvalues of S;S;!, where t = min(p, q).
Let & = M'E"!M be the noncentrality matrix. Assume that rank(Q) = k, and
let w; > -+ > wr > 0 be the non-zero eigenvalues of Q. The following result
was obtained by Fujikoshi et al. (2003), by using perturbation expansion of the

eigenvalues.
THEOREM 5.3. Assume that Q@ = O(p) and
Wy > > W > Wy = = wy = 0.
Then, under the assumption that p/n — ¢ € (0,1), we have the following results.

(1) byl i ... q} are asymptotically independent.
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(2) Fora=1,...,k,
Vmly = pia) - N(0,07),
where pio = r(1+wep™!), m=n—p+q, r =p/m, 0% = 2(=r+2uq+p2).
(3) Lety; = vVm(leyj—r)//r(1+71), §=1,...,a=q—k. Then, the limiting

density function of (yy,...,yx) 15 given by

7ra(a—l)/4
(a/?)?a (a+3)/ Z Yj H )

1<J

where T'p(a) = 7PP~V/ATIE_ T(a - (i — 1)/2).

Let
(k) m g »
Tip=— p(l+—> log [] (1+lj)_l+(Q—k)log(l+—T;> ,
P j=k+1

ji= k—H

q
(k) p m L
Tynp = 1+ = 1+ — —
o= vp(1+2) ( )z

J

Then, from Theorem 5.3 (3) we have

TH 2y N(0,2(q — k)1 + 7)),

for the null distribution of T} for G = LR, LH, BN P. Fujikoshi et al. (2003a)
have noted that the high dimensional approximations are numerically more ac-
curate than the classical large sample approximations.
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