• Title/Summary/Keyword: asymmetrical half-bridge DC-DC converter

Search Result 22, Processing Time 0.027 seconds

High Efficiency Half-bridge DC-DC Converter for an LED Backlight Drive System of LCD Module Inspection Equipment (LCD 모듈 검사장비용 LED 백라이트 드라이브 시스템을 위한 고효율 반브리지 직류-직류 전력변환기)

  • Yoo, Doo-Hee;Jeong, Gang-Youl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.535-542
    • /
    • 2008
  • This paper presents a high efficiency half-bridge DC-DC converter for an LED backlight drive system of LCD module inspection equipment. The proposed converter improves the converter efficiency using characteristics of the asymmetrical half-bridge converter and the self-driven synchronous rectifier, and thus improves the total efficiency of the LED backlight drive system. The synchronous rectifier applied to the proposed converter is the new topological synchronous rectifier, which changes slightly the transformer structure and the synchronous switch connection in the asymmetrical half-bridge converter with a conventional self-driven synchronous rectifier. Since the proposed converter utilizes the transformer leakage inductor as its resonant inductor, its structure is simplified. The proposed converter well operates under the universal DC input voltage ($250{\sim}380V$). The operational principle and a design example for a 100W prototype are discussed in detail, respectively. Experimental results are shown for the designed prototype converter under universal DC input voltage.

An Asymmetrical Half-Bridge Dc-to-Dc Converter Employing Charge Control (전하 제어를 적용한 비대칭 하프 브리지 직류-직류 컨버터)

  • Lim, Won-Seok;Choi, Byung-Cho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1184-1186
    • /
    • 2003
  • In this paper, a charge controlled asymmetrical half-bridge (ASHB) dc-to-dc converter is presented. For ASHB do-to-dc converter, the peak current-mode control was found to be problematic primarily due to the oscillatory behavior of the current feedback signal. To resolve this problem, a charge control method is applied to the ASHB do-to-dc converter. A 50W prototype ASHB dc-to-dc converter was built, and successfully tested.

  • PDF

Buck-Boost Interleaved Inverter Configuration for Multiple-Load Induction Cooking Application

  • Sharath Kumar, P.;Vishwanathan, N.;Bhagwan, K. Murthy
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.271-279
    • /
    • 2015
  • Induction cooking application with multiple loads need high power inverters and appropriate control techniques. This paper proposes an inverter configuration with buck-boost converter for multiple load induction cooking application with independent control of each load. It uses one half-bridge for each load. For a given dc supply of $V_{DC}$, one more $V_{DC}$ is derived using buck-boost converter giving $2V_{DC}$ as the input to each half-bridge inverter. Series resonant loads are connected between the centre point of $2V_{DC}$ and each half-bridge. The output voltage across each load is like that of a full-bridge inverter. In the proposed configuration, half of the output power is supplied to each load directly from the source and remaining half of the output power is supplied to each load through buck-boost converter. With buck-boost converter, each half-bridge inverter output power is increased to a full-bridge inverter output power level. Each half-bridge is operated with constant and same switching frequency with asymmetrical duty cycle (ADC) control technique. By ADC, output power of each load is independently controlled. This configuration also offers reduced component count. The proposed inverter configuration is simulated and experimentally verified with two loads. Simulation and experimental results are in good agreement. This configuration can be extended to multiple loads.

Dynamic Analysis and Control Design of Current-Mode Controlled Asymmetrical Half-Bridge DC-To-DC Converters (전류 제어 비대칭 하프 브릿지 직류-직류 컨버터의 동특성 해석 및 제어회로 설계)

  • Lim W.S.;Choi B,C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.337-340
    • /
    • 2003
  • This paper presented practical details about control-loop design and dynamic analysis for a peak current-mode controlled asymmetrical half-bridge(ASHB) do-to-dc converter, Graphical loop gain method is used to design the feedback compensation and analyze the closed-loop performance of ASHB converter. The results of the control design and closed-loop analysis are validated by experiments on a prototype converter.

  • PDF

Comparative Performance Evaluation of Current-Mode Controls Adapted to Asymmetrical Half-Bridge Dc-to-Dc Converters (비대칭 하프 브릿지 직류-직류 컨버터에 적용된 전류 제어의 성능평가 비교)

  • Lim, Won-Seok;Choi, Byung-Cho;Park, Sung-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.257-260
    • /
    • 2005
  • Three different current-mode control schemes, peak current-mode control, charge control, and average current-mode control, are investigated for applications to asymmetrical half-bridge dc-to-dc converters. The principles, implementation, and performance of the three control schemes are compared in an attempt to identify the irrespective merits and limitations. Design examples for feedback compensations are given for the three control schemes. A 50 W experimental asymmetrical half-bridge dc-to-dc converter was used to experimentally verify the theoretical results of the paper.

  • PDF

Start-up In-rush Current Reduction Technique of Asymmetrical Half-Bridge DC/DC Converter for PC Power Supply (PC 파워 서플라이용 비대칭 하프브리지 DC/DC 컨버터의 초기 구동시 돌입전류 제거 기법)

  • Kim Jae-Kuk;Lee Sung-Sae;Oh Won-Sik;Kim Jung-Eun;Moon Gun-Woo;Gil Chang-Hyun;Cho Ja-Ryong
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.251-253
    • /
    • 2006
  • This paper presents a start-up in-rush current reduction technique of asymmetry half-bridge DC/DC converter for PC power supply. The proposed converter is composed center-tapped half-bridge converter with blocking capacitor. The proposed converter can reduce the severe in-rush current when the proposed converter is power up. The validity of this study is confirmed from the experimental results.

  • PDF

A New Asymmetrical PWM Bidirectional Half Bridge Converter for Wide Input Voltage Range Applications (넓은 입력 전압 범위를 갖는 새로운 비대칭 PWM 방식의 양방향 하프브리지 컨버터)

  • Kim, Jeong-Geun;Choi, Se-Wan;Park, Rae-Kwan;Chang, Seo-Geon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.235-242
    • /
    • 2009
  • In this paper a new asymmetrical PWM bidirectional half bridge converter is proposed. The proposed converter has simple structure and wide duty cycle range, and therefore is suitable for applications such as fuel cells which have wide voltage variation. With the proposed asymmetrical PWM method the current rating of switch and transformer is significantly reduced compared to the conventional phase angle control method, and ZVZCS and synchronous rectification can also be achieved. This could result in high efficiency and high power density. The proposed converter is analytically compared to the conventional converter, and the proposed method was validated through the experiment.

A Bridgeless Half-Bridge AC-DC Converter with High-Efficiency (정류용 브릿지 다이오드가 없는 고효율 하프 브릿지 AC-DC 컨버터)

  • Choi, Woo-Young;Yoo, Ju-Seung;Choi, Jae-Yeon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.293-301
    • /
    • 2011
  • This paper proposes a bridgeless half-bridge AC-DC converter with high-efficiency. The proposed converter integrates the bridgeless power factor correction (PFC) circuit with the asymmetrical pulse-width modulated (APWM) half-bridge DC-DC converter. It provides the isolated DC output voltage from the AC line voltage without using any full-bridge diode rectifier. Conduction losses are lowered with a simple circuit structure. Switching losses are also reduced by achieving zero-voltage switching (ZVS) of the power switches. By using series-connected two transformers, the proposed converter provides a low-profile and high power density for AC-DC converters. The performance of the proposed converter is verified from a 250 W (48 V / 5.2 A) experimental prototype circuit at $90 \;V_{rms}$ line voltage.

Small-Signal Modeling and Control Design of Asymmetrical Half Bridge DC/DC Converter (시비율 비대칭 하프 브릿지 컨버터의 소신호 해석 및 전압 제어 루우프 설계)

  • Bang Sang-Hyun;Lim Wonseok;Kang Yonghan;Choi Byungcho
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.538-541
    • /
    • 2002
  • Dynamic analysis and compensation design for an asymmetrical half bridge do-dc converter are presented. A small-signal model is developed using the averaging method. Based on the proposed small-signal average model, the open loop transfer functions of the power stage were obtained and used for the compensation design. All theoretical predictions are validated by experiments on a prototype converter.

  • PDF

A Secondary Resonance Soft Switching Half Bridge DC-DC Converter with an Inductive Output Filter

  • Chen, Zhang-yong;Chen, Yong
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1391-1401
    • /
    • 2017
  • In this paper, a secondary resonance half-bridge dc-dc converter with an inductive output filter is presented. The primary side of such a converter utilizes asymmetric pulse width modulation (APWM) to achieve zero-voltage switching (ZVS) of the switches, and clamps the voltage of the switch to the input voltage. In addition, zero current switching (ZCS) of the output diode is achieved by a half-wave rectifier circuit with a filter inductor and a resonant branch in the secondary side of the proposed converter. Thus, the switching losses and diode reverse-recovery losses are eliminated, and the performance of the converter can be improved. Furthermore, an inductive output filter exists in the converter reduce the output current ripple. The operational principle, performance analysis and design equation of this converter are given in this paper. The analysis results show that the output diode voltage stress is independent of the duty cycle, and that the voltage gain is almost linear, similar to that of the isolation Buck-type converter. Finally, a 200V~380V input, 24V/2A output experimental prototype is built to verify the theoretical analysis.