• 제목/요약/키워드: asymmetrical half-bridge DC-DC converter

검색결과 22건 처리시간 0.023초

LCD 모듈 검사장비용 LED 백라이트 드라이브 시스템을 위한 고효율 반브리지 직류-직류 전력변환기 (High Efficiency Half-bridge DC-DC Converter for an LED Backlight Drive System of LCD Module Inspection Equipment)

  • 유두희;정강률
    • 제어로봇시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.535-542
    • /
    • 2008
  • This paper presents a high efficiency half-bridge DC-DC converter for an LED backlight drive system of LCD module inspection equipment. The proposed converter improves the converter efficiency using characteristics of the asymmetrical half-bridge converter and the self-driven synchronous rectifier, and thus improves the total efficiency of the LED backlight drive system. The synchronous rectifier applied to the proposed converter is the new topological synchronous rectifier, which changes slightly the transformer structure and the synchronous switch connection in the asymmetrical half-bridge converter with a conventional self-driven synchronous rectifier. Since the proposed converter utilizes the transformer leakage inductor as its resonant inductor, its structure is simplified. The proposed converter well operates under the universal DC input voltage ($250{\sim}380V$). The operational principle and a design example for a 100W prototype are discussed in detail, respectively. Experimental results are shown for the designed prototype converter under universal DC input voltage.

전하 제어를 적용한 비대칭 하프 브리지 직류-직류 컨버터 (An Asymmetrical Half-Bridge Dc-to-Dc Converter Employing Charge Control)

  • 임원석;최병조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1184-1186
    • /
    • 2003
  • In this paper, a charge controlled asymmetrical half-bridge (ASHB) dc-to-dc converter is presented. For ASHB do-to-dc converter, the peak current-mode control was found to be problematic primarily due to the oscillatory behavior of the current feedback signal. To resolve this problem, a charge control method is applied to the ASHB do-to-dc converter. A 50W prototype ASHB dc-to-dc converter was built, and successfully tested.

  • PDF

Buck-Boost Interleaved Inverter Configuration for Multiple-Load Induction Cooking Application

  • Sharath Kumar, P.;Vishwanathan, N.;Bhagwan, K. Murthy
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.271-279
    • /
    • 2015
  • Induction cooking application with multiple loads need high power inverters and appropriate control techniques. This paper proposes an inverter configuration with buck-boost converter for multiple load induction cooking application with independent control of each load. It uses one half-bridge for each load. For a given dc supply of $V_{DC}$, one more $V_{DC}$ is derived using buck-boost converter giving $2V_{DC}$ as the input to each half-bridge inverter. Series resonant loads are connected between the centre point of $2V_{DC}$ and each half-bridge. The output voltage across each load is like that of a full-bridge inverter. In the proposed configuration, half of the output power is supplied to each load directly from the source and remaining half of the output power is supplied to each load through buck-boost converter. With buck-boost converter, each half-bridge inverter output power is increased to a full-bridge inverter output power level. Each half-bridge is operated with constant and same switching frequency with asymmetrical duty cycle (ADC) control technique. By ADC, output power of each load is independently controlled. This configuration also offers reduced component count. The proposed inverter configuration is simulated and experimentally verified with two loads. Simulation and experimental results are in good agreement. This configuration can be extended to multiple loads.

전류 제어 비대칭 하프 브릿지 직류-직류 컨버터의 동특성 해석 및 제어회로 설계 (Dynamic Analysis and Control Design of Current-Mode Controlled Asymmetrical Half-Bridge DC-To-DC Converters)

  • 임원석;최병조
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.337-340
    • /
    • 2003
  • This paper presented practical details about control-loop design and dynamic analysis for a peak current-mode controlled asymmetrical half-bridge(ASHB) do-to-dc converter, Graphical loop gain method is used to design the feedback compensation and analyze the closed-loop performance of ASHB converter. The results of the control design and closed-loop analysis are validated by experiments on a prototype converter.

  • PDF

비대칭 하프 브릿지 직류-직류 컨버터에 적용된 전류 제어의 성능평가 비교 (Comparative Performance Evaluation of Current-Mode Controls Adapted to Asymmetrical Half-Bridge Dc-to-Dc Converters)

  • 임원석;최병조;박성우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.257-260
    • /
    • 2005
  • Three different current-mode control schemes, peak current-mode control, charge control, and average current-mode control, are investigated for applications to asymmetrical half-bridge dc-to-dc converters. The principles, implementation, and performance of the three control schemes are compared in an attempt to identify the irrespective merits and limitations. Design examples for feedback compensations are given for the three control schemes. A 50 W experimental asymmetrical half-bridge dc-to-dc converter was used to experimentally verify the theoretical results of the paper.

  • PDF

PC 파워 서플라이용 비대칭 하프브리지 DC/DC 컨버터의 초기 구동시 돌입전류 제거 기법 (Start-up In-rush Current Reduction Technique of Asymmetrical Half-Bridge DC/DC Converter for PC Power Supply)

  • 김재국;이성세;오원식;김정은;문건우;길창현;조자룡
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.251-253
    • /
    • 2006
  • This paper presents a start-up in-rush current reduction technique of asymmetry half-bridge DC/DC converter for PC power supply. The proposed converter is composed center-tapped half-bridge converter with blocking capacitor. The proposed converter can reduce the severe in-rush current when the proposed converter is power up. The validity of this study is confirmed from the experimental results.

  • PDF

넓은 입력 전압 범위를 갖는 새로운 비대칭 PWM 방식의 양방향 하프브리지 컨버터 (A New Asymmetrical PWM Bidirectional Half Bridge Converter for Wide Input Voltage Range Applications)

  • 김정근;최세완;박래관;장서건
    • 전력전자학회논문지
    • /
    • 제14권3호
    • /
    • pp.235-242
    • /
    • 2009
  • 본 논문에서는 새로운 비대칭 PWM 제어 방식의 양방향 하프브리지 컨버터를 제안한다. 제안한 컨버터는 구조가 간단하고 넓은 듀티 범위를 가지므로 연료전지와 같은 넓은 전압변동을 가지는 응용에 적합하다. 제안한 비대칭 PWM 방식은 기존의 위상각제어 방식에 비해 스위치 및 변압기의 동작전류를 큰 폭으로 낮추었고 ZVZCS와 동기 정류 방식을 적용하여 높은 효율과 전력밀도를 가질 수 있다. 기존 컨버터와의 비교 분석을 수행하였으며 실험을 통해 본 방식의 타당성을 검증하였다.

정류용 브릿지 다이오드가 없는 고효율 하프 브릿지 AC-DC 컨버터 (A Bridgeless Half-Bridge AC-DC Converter with High-Efficiency)

  • 최우영;유주승;최제연
    • 전력전자학회논문지
    • /
    • 제16권3호
    • /
    • pp.293-301
    • /
    • 2011
  • 본 논문에서는 정류용 브릿지 다이오드가 없는 고효율 하프 브릿지 AC-DC 컨버터를 제안한다. 제안하는 컨버터는 비대칭 펄스 폭 변조 방식의 하프 브릿지 DC-DC 컨버터와 정류용 브릿지 다이오드가 없는 역률 개선 회로가 통합된 회로 구조를 지닌다. 제안하는 컨버터는 정류용 브릿지 다이오드를 사용하지 않고 교류 입력 전압으로부터 절연된 직류 출력 전압을 공급한다. 간단한 회로 구조와 함께 도통 손실을 줄일 수 있다. 또한 스위칭 소자들의 영전압 스위칭을 통하여 스위칭 손실을 줄일 수 있다. 두 개의 직렬 연결된 트랜스포머를 구비함으로서 프로파일을 낮추고 전력밀도를 높일 수 있다. 250 W (48 V / 5.2 A) 회로 설계 및 실험을 통하여 제안된 컨버터의 성능을 $90 \;V_{rms}$ 교류 입력 전압에 대하여 입증하였다.

시비율 비대칭 하프 브릿지 컨버터의 소신호 해석 및 전압 제어 루우프 설계 (Small-Signal Modeling and Control Design of Asymmetrical Half Bridge DC/DC Converter)

  • 방상현;임원석;강용한;최병조
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.538-541
    • /
    • 2002
  • Dynamic analysis and compensation design for an asymmetrical half bridge do-dc converter are presented. A small-signal model is developed using the averaging method. Based on the proposed small-signal average model, the open loop transfer functions of the power stage were obtained and used for the compensation design. All theoretical predictions are validated by experiments on a prototype converter.

  • PDF

A Secondary Resonance Soft Switching Half Bridge DC-DC Converter with an Inductive Output Filter

  • Chen, Zhang-yong;Chen, Yong
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1391-1401
    • /
    • 2017
  • In this paper, a secondary resonance half-bridge dc-dc converter with an inductive output filter is presented. The primary side of such a converter utilizes asymmetric pulse width modulation (APWM) to achieve zero-voltage switching (ZVS) of the switches, and clamps the voltage of the switch to the input voltage. In addition, zero current switching (ZCS) of the output diode is achieved by a half-wave rectifier circuit with a filter inductor and a resonant branch in the secondary side of the proposed converter. Thus, the switching losses and diode reverse-recovery losses are eliminated, and the performance of the converter can be improved. Furthermore, an inductive output filter exists in the converter reduce the output current ripple. The operational principle, performance analysis and design equation of this converter are given in this paper. The analysis results show that the output diode voltage stress is independent of the duty cycle, and that the voltage gain is almost linear, similar to that of the isolation Buck-type converter. Finally, a 200V~380V input, 24V/2A output experimental prototype is built to verify the theoretical analysis.