• Title/Summary/Keyword: asphalt content

Search Result 129, Processing Time 0.025 seconds

Effect of the Compaction Energy and the Marshall Stability due to the Marshall Equipments and Installation Conditions (마샬시험 장치 및 설치조건이 다짐에너지와 안정도에 미치는 영향)

  • Park, Tae-Soon;Kim, Yong-Ju
    • International Journal of Highway Engineering
    • /
    • v.2 no.4 s.6
    • /
    • pp.123-131
    • /
    • 2000
  • The compaction equipment and the Marshall stability head are the two important testing equipment for the Marshall test. The compaction equipment is closely related to the air void, VMA and compactability of the mixtures, and the stability head is related to the Marshall stability and the flow, therefore the size and the shape of the equipment is essential for finding the accurate optimum asphalt content for the asphalt mix design. However, the size and the shape of the equipment currently used and the condition of the installation of compaction pedestal in this country are different from each agency and manufacturer. The national inspection of the Marshall equipment is necessary because the difference can affect the test results and also the performance of the asphalt pavement.

  • PDF

Fundamental Properties of Asphalt Concrete Mixture as Using TDF Fly Ash as Mineral Filler (아스팔트 콘크리트 채움재로 TDF Fly Ash 적용에 따른 아스팔트 혼합물 기초 물성 평가)

  • Choi, Min-Ju;Kim, Hyeokjung;Kim, Yongjoo;Lee, Jaejun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.497-505
    • /
    • 2017
  • TDF (Tire derived fuel) Fly ash is an industrial by-product when scraped tire was used a fuel source at the power plant. TDF Fly ash has been classified as domestic waste at the workplace so far and has not been appropriately utilized. We conducted a fundamental physical property test of asphalt mixture to investigate the possibility of using TDF Fly ash as a mineral filler of asphalt mixture for exploring new usage strategies. TDF Fly ash meets KS F 3501 asphalt mixture mineral filler criteria. And the optimal asphalt binder amount was determined to be 4.5% by Marshall design. Mineral filler content was determined at 3% and analyzed by comparing using mineral filler as stone powder. The basic physical property test of the asphalt mixture was evaluated to the provision indicated in "Production and Construction Guidelines for Asphalt Mixture" published by the Ministry of Land, Infrastructure and Transport. In the test, Marshall stability test, dynamic immersion test, tensile strength ratio test, wheel tracking test were carried out. As a result of the experiment, Marshall stability and dynamic stability satisfied the standards, and confirmed the stability and Dynamic immersion and tensile strength ratio test that TDF Fly ash is more effective for scaling and moisture resistance than stone dust. Therefore, in this research, it is expected that multilateral utilization of TDF Fly ash, and a positive effect can be also expected.

Comparison and Evaluation of Dynamic Modulus of Hot Mix Asphalt with Different Shift Factors (전이함수 결정법에 따른 아스팔트 혼합물의 동탄성계수 비교평가)

  • Kim, Hyun-Oh;Lee, Kwan-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.49-61
    • /
    • 2005
  • The dynamic modulus of hot mix asphalt can be determined according to the different combinations of testing temperature and loading frequency. The superposition rule is adapted to get the master curve of dynamic modulus for each hot mix asphalt. There are couple of different methods to get the shift factor which is a key for making the master curve. In this paper, Arrehnius, 2002 AASHTO, and experimental method was employed to get the master curve. Evaluation of dynamic modulus for 25mm base course of hot mix asphalt with granite aggregate and two asphalt binders(AP-3 and AP-5) was carried out. Superpave Level 1 Mix Design with gyratory compactor was adopted to determine the optimum asphalt binder content(OAC) and the measured ranges of OAC were between 4.1% and 4.4%. UTM was used for laboratory test. The dynamic modulus and phase angle were determined by testing on UTM, with 5 different testing temperature(-10, 5, 20, 40, & $55^{\circ}C$) and 5 different loading frequencies(0.05, 0.1, 1, 10, 25 Hz). Using the measured dynamic modulus and phase angle, the input parameters of Sigmoidal function equation to represent the master curve were determined and these will be adopted in FEM analysis for asphalt pavements. The shift factor and activation energy for determination of master curve were calculated.

  • PDF

Evaluation of the Effect of Aggregate Structure on Rutting Performance of Asphalt Pavement (아스팔트 포장의 소성변형에 대한 골재 구조의 영향 평가)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.135-147
    • /
    • 2007
  • Segregation in asphalt pavements occurs as a result of the non-uniform distribution of coarse and fine aggregates and causes premature distresses, such as cracking, raveling, and stripping. The effect of segregation on rutting, however, has not been clearly identified. Experimental and analytical work performed in this study indicates that rutting performance is affected by segregation of mixtures. However, the aggregate structure of mixtures appears to be a more critical factor that determines the rutting performance, rather than the level of segregation. Based on the field mixtures evaluated, an increase of coarse aggregate volume in an asphalt mixture is an important factor that results in good rutting performance. This effect holds true for mixtures with lower levels of air voids, but for mixtures with higher levels of air voids, the air voids effect becomes dominant, resulting in a reduction in rutting performance. An air void content of 10% appears to be a threshold that determines the rutting performance of Superpave mixtures. Once the air void content exceeds 10%, the rutting performance of Superpave mixtures decreases significantly, despite the coarse aggregate volume.

  • PDF

A Study on the Development of Color Pavement (칼라포장(鋪裝) 개발(開發)에 관한 연구(研究))

  • Kim, Ju Won;Kim, Dae Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.11-18
    • /
    • 1982
  • The binder for hot mix type colored pavement must have the same physical qualities as the straight asphalt cement, but its color must not be dark-brown. We developed a kind of synthetic resin binder with light yellow color and confirmed its possibility as a binder for colored pavement through the several comparison tests between the straight asphalt cement concrete mixture and the mixture of binder and aggregate for colored pavement. For the pigment, it has been assured through tests that home products have the possiblities to be used. The binder has come to the stage of practical use through the trial mixing by asphalt mixing plant and the trial field placing. The mixing operation and the paving method of colored mixture are same as normal asphalt concrete mixture, but the quantity of pigment replaces that of mineral filler. The required content of pigment is decided by the trial mixing with other materials to be used.

  • PDF

Development of a Spray-Injection Patching System and a Field Performance Evaluation of 100% RAP Asphalt Mixtures using a Rapid-Setting Polymer-Modified Asphalt Emulsion (아스팔트 긴급보수용 스프레이 패칭 장비 개발 및 현장 적용성 평가)

  • Han, Soo Hyun;Lee, Sang Yum;Rhee, Suk Keun;Kwon, Bong Ju
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.77-85
    • /
    • 2018
  • PURPOSES : The purpose of this study was to develop an urgent road-repair system and perform a field applicability test, as well as discover the optimum mix design for machine applications compared to the optimum mix design for lab applications. METHODS : According to reviews of the patent and developed equipment, self-propelled and mix-in-place equipment types are suitable for urgent pavement repair, e.g., potholes and cracks. The machine-application mix design was revised based on the optimum lab-test mix design, and the field application of a spray-injection system was performed on the job site. The mixture from the machine application and lab application was subjected to a wet-track abrasion test and a wheel-tracking test to calibrate the machine application. RESULTS and CONCLUSIONS : This study showed that the binder content could differ for the lab application and the machine application in the same setting. Based on the wet-track abrasion test result, the binder contents of the machine application exceeded the binder contents of the lab application by 1-1.5% on the same setting value. Moreover, the maximum dynamic stability value for the machine application showed 1% lower binder contents than the maximum lab-application value. Collectively, the results of the two different tests showed that the different sizes and operating methods of the machine and lab applications could affect the mix designs. Further studies will be performed to verify the bonding strength and monitor the field application.

Evaluation of Rutting and Deformation Strength Properties of Polymer Modified SMA Mixtures (개질재 첨가에 따른 SMA 혼합물의 소성변형 및 변형강도 특성 연구)

  • Kim, Hyun-H.;Choi, Young-R.;Kim, Kwang-W.;Doh, Young-S.
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.25-31
    • /
    • 2009
  • In general, it is well known fact that the stone mastic asphalt (SMA) pavement has a high resistance against rutting. However, performance of SMA is not well measured by general method used in the laboratory. The objective of this study is to investigate an applicability of deformation strength ($S_D$) for performance estimation of SMA, and to find out the correlation between rut depth and dynamic stability, and $S_D$ of SMA. This study carried out wheel tracking test and Kim-test with optimum asphalt content (OAC) determined by mix design. The results indicated that the $S_D$ of SMA was very poorer than those of dense-graded asphalt mixtures. $S_D$ showed similar WT dynamic stability and rut-depth level. It was found that Kim-test was not reflected higher rutting resistance of SMA like as indirect tensile strength (ITS) test and Marshall stability test. Also, it was revealed that dynamic stability and rut-depth of WT had some problems to estimate rutting resistance of SMA mixtures.

  • PDF

Analysis of Technical Problem for Soil Compaction by Gyratory Compactor (선회다짐기를 이용한 흙의 다짐시 기술적 문제 분석)

  • Lee, Kwan-Ho;Jang, Tae-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • Proctor test A or D method of compaction is the most common laboratory test for investigation of subgrade soil characteristics, however, compression type using roller is used in the field. The differences between laboratory and field compaction have considerable error as application to subgrade soil properties of laboratory test. The investigation of compacted soil is carried into effect to solve the problem. The gyratory compactor which is made to reproduce the field density of asphalt mixture, coming from traffic loads, has an advance to compact it similar to arrangement of field aggregate particles. This gyratory compactor has several problems of investigation of compacted soil, because it has designed to make initial asphalt specimens. The main objectives of this research are grasping problems when compacted soil test using the gyratory compactor and showing solutions. It has made a comparative study of difference of the percentage of water content and weight, which are before and after compaction, about the pressure of compaction, frequency of compaction and speed of compaction. And it also has investigated finding maximum percentage of water content which not occur change of percentage of water content after compaction and searching how has an effect on drawing compaction curve.

Analysis on the Causes of the Oil Leakage Phenomenon for Complex Waterproofing Methods of Asphalt Mastic and Modified Asphalt Sheet (콘크리트 구조물에 사용되는 개량아스팔트 시트와 아스팔트 매스틱을 복합화한 방수공법의 누유현상 원인 분석)

  • Park, Jin-Sang;Kim, Dong-Bum;Park, Wan-Goo;Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.4
    • /
    • pp.337-345
    • /
    • 2018
  • In this study, observations of oil leakage samples taken from the actual site were performed to identify the causes of the oil leakage phenomenon. As a result, the separation of the material components was determined as the main cause of the oil leakage phenomenon based on the changes in the surface conditions, and verification of this was conducted. The evaluation results confirmed that the filler component of the asphalt mastic subsided with the lapse of the settling time, and that the difference ratio of the filler contents of the upper and lower specimens was up to 23.8% after day 28. Based on these results, a hypothesis on the oil leakage mechanism of asphalt mastic was established, and then modeling of the entire process of oil leakage was performed.

Methodology for Developing HMA Mix Design Taking into Account Performance-Related Mechanistic Properties (포장성능관련 역학적 특성이 고려된 아스팔트 혼합물의 배합설계법 개발 방안)

  • Kim Boo-Il;Lee Moon-Sup;Kim Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.15-23
    • /
    • 2006
  • Criteria of the current asphalt mix design, Marshall method, includes the stability and flow which are not related with field performance of HMA mixture, together with the air void, Void filled with asphalt (VFA) and/or Void of mineral Aggregate(VMA). In addition, the limits of stability and flow are satisfied in most cases, the Optimum asphalt content (OAC) is determined based on volumetric properties, such as the air void and/or VFA and/of VMA. Therefore, many researchers have sought mechanistic properties which can replace the stability and flow, making the designed mixture having potential for better field performance. This study initiated to develope a mix design by introducing two performance-related mechanistic properties, the deformation strengh and fracture energy, in place of the stability and flow of the Marshall method. The deformation strength $(S_D)$ from the Kim Test has a high correlation with rutting property and the fracture energy(FE) from the indirect tensile test represents the fatigue cracking property of asphalt mixture. Four types of asphalt mixture were prepared for examining possibility of using the suggested mix design method in comparison with current methods. The results showed that mechanical properties were reflected in determination of OAC with this suggested mix design, unlike the existing Marshall method.

  • PDF