• Title/Summary/Keyword: artificial intelligence (AI)

Search Result 1,975, Processing Time 0.026 seconds

A Survey of Applications of Artificial Intelligence Algorithms in Eco-environmental Modelling

  • Kim, Kang-Suk;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.102-110
    • /
    • 2009
  • Application of artificial intelligence (AI) approaches in eco-environmental modeling has gradually increased for the last decade. Comprehensive understanding and evaluation on the applicability of this approach to eco-environmental modeling are needed. In this study, we reviewed the previous studies that used AI-techniques in eco-environmental modeling. Decision Tree (DT) and Artificial Neural Network (ANN) were found to be major AI algorithms preferred by researchers in ecological and environmental modeling areas. When the effect of the size of training data on model prediction accuracy was explored using the data from the previous studies, the prediction accuracy and the size of training data showed nonlinear correlation, which was best-described by hyperbolic saturation function among the tested nonlinear functions including power and logarithmic functions. The hyperbolic saturation equations were proposed to be used as a guideline for optimizing the size of training data set, which is critically important in designing the field experiments required for training AI-based eco-environmental modeling.

How to Review a Paper Written by Artificial Intelligence (인공지능으로 작성된 논문의 처리 방안)

  • Dong Woo Shin;Sung-Hoon Moon
    • Journal of Digestive Cancer Research
    • /
    • v.12 no.1
    • /
    • pp.38-43
    • /
    • 2024
  • Artificial Intelligence (AI) is the intelligence of machines or software, in contrast to human intelligence. Generative AI technologies, such as ChatGPT, have emerged as valuable research tools that facilitate brainstorming ideas for research, analyzing data, and writing papers. However, their application has raised concerns regarding authorship, copyright, and ethical considerations. Many organizations of medical journal editors, including the International Committee of Medical Journal Editors and the World Association of Medical Editors, do not recognize AI technology as an author. Instead, they recommend that researchers explicitly acknowledge the use of AI tools in their research methods or acknowledgments. Similarly, international journals do not recognize AI tools as authors and insist that human authors should be accountable for the research findings. Therefore, when integrating AI-generated content into papers, it should be disclosed under the responsibility of human authors, and the details of the AI tools employed should be specified to ensure transparency and reliability.

Efficient use of artificial intelligence ChatGPT in educational ministry (인공지능 챗GPT의 교육목회에 효율적인 활용방안)

  • Jang Heum Ok
    • Journal of Christian Education in Korea
    • /
    • v.78
    • /
    • pp.57-85
    • /
    • 2024
  • Purpose of the study: In order to utilize artificial intelligence-generated AI in educational ministry, this study analyzes the concept of artificial intelligence and generative AI and the educational theological aspects of educational ministry to find ways to efficiently utilize artificial intelligence ChatGPT in educational ministry. Contents and methods of the study: The contents of this study are. First, the contents of this study were analyzed by dividing the concepts of artificial intelligence and generative AI into the concept of artificial intelligence, types of artificial intelligence, and generative language model AI ChatGPT. Second, the educational theological analysis of educational ministry was divided into the concept of educational ministry, the goals of educational ministry, the content of educational ministry, and the direction of educational ministry in the era of artificial intelligence. Third, the plan to use artificial intelligence ChatGPT in educational ministry is to provide tools for writing sermon manuscripts, preparation tools for worship and prayer, and church education, focusing on the five functions of the early church community. It was analyzed by dividing it into tools for teaching, tools for teaching materials for believers, and tools for serving and volunteering. Conclusion and Recommendation: The conclusion of this study is that, first, when writing sermon manuscripts through artificial intelligence ChatGPT, high-quality sermon manuscripts can be written through the preacher's spirituality, faith, and insight. Second, through artificial intelligence ChatGPT, you can efficiently design and plan worship services and prepare services that serve the congregation objectively through various scenarios. Third, by using artificial intelligence ChatGPT in church education, it can be used while maintaining a complementary relationship with teachers through collaboration with human and artificial intelligence teachers. Fourth, through artificial intelligence ChatGPT, we provide a program that allows members of the church community to share spiritual fellowship, a plan to meet the needs of church members and strengthen interdependence, and an attitude of actively welcoming new people and respecting diversity. It provides useful materials that can play an important role in giving, loving, serving, and growing together in the love of Christ. Lastly, through artificial intelligence ChatGPT, we are seeking ways to provide various information about volunteer activities, learning support for children and youth in the community, mentoring-related programs, and playing a leading role in forming a village community in the local community.

The Paradigm Shift of Intelligence Information Society: Law and Policy (지능정보사회에 대한 규범적 논의와 법정책적 대응)

  • Kim, Yun-Myung
    • Informatization Policy
    • /
    • v.23 no.4
    • /
    • pp.24-37
    • /
    • 2016
  • An Intelligent information society means intelligent superconducting society that goes beyond information society where information is centered. Now that artificial intelligence is specifically discussed, it is time to start discussing the laws and systems for intelligent information society, where artificial intelligence plays a key role. At some point it may be too late to cope with singularity. Of course, it is not easy to predict how artificial intelligence will change our society. However, there are concerns on what kind of relationship should humans build with AI in the intelligent information society where algorithms rule the world or at least support decision making of humans. What is obvious is that humans dominating AI or ruling out AI will not be the answer. Discussions for legal framework to respond to the AI-based intelligent information society needs to be achieved to a level that replaces the current human-based legal framework with AI. This is because legal improvement caused by the paradigm shift to the intelligent information society may assume emergence of new players-AI, robots, and objects-and even their subjectivation.

Applications of Artificial Intelligence to Power Systems (전력시스템에 있어서의 인공지능의 응용)

  • Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.26-28
    • /
    • 1993
  • The application of artificial intelligence technologies to power systems has been an active research topic for about a decade. The purpose of this paper is to provide a brief review of the current status of applications of artificial intelligence (AI) techniques to power systems. In this paper, AI techniques, such as knowlege-based expert systems, artificial neural networks and fuzzy systems are reviewed in the view of the applications to power systems.

  • PDF

The Application of Delphi-AHP Method in the Priority of Policies for Expanding the Use of Artificial Intelligence

  • Han, Eunyoung
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.99-110
    • /
    • 2021
  • Governments around the world are actively establishing strategies and initiatives to spread the use of artificial intelligence (AI), for AI is not a mere new technology, but is an innovative technology that brings about extensive changes in industrial and social structures and is a core engine that will lead the 4th Industrial Revolution. The South Korean government has also been paying attention to AI as a technology and tool for innovative growth, but its application to the industries is still rather sluggish. The government has prepared multifarious AI-related policies with the aim of constructing South Korea as an AI powerhouse, but there is no clear strategy on which detailed policies to implement first and which industries to apply AI preferentially. With these limitations of South Korea's AI policies in mind, this paper analyzed the priorities of industries in AI adoption and the priorities of AI-related national policies, using Delphi-AHP method for 30 top-level AI experts in South Korea. The results of analysis show that AI application is urgent and necessary in the fields of medical/healthcare, public and safety, and manufacturing, which seems to reflect the peak of the COVID-19 crisis in the second half of 2020 at the time of the investigation. And it turns out that policies related to AI talent cultivation, data, and R&D investment are important and urgent above all in order for organizations to apply AI. This suggests that strategies are required to focus limited national resources on these industries and policies first.

Development of AI education program based on Design Thinking (디자인 씽킹 기반 인공지능 교육 프로그램 개발)

  • Lee, Jaeho;Lee, Seunghoon
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.31-36
    • /
    • 2021
  • In the era of the 4th industrial revolution represented by AI technology, various AI education is being conducted in the education field. However, AI education in the educational field is mostly one-off project education or teacher-centered education. In order to practice student-centered, field-oriented education, an artificial intelligence education program was developed based on design thinking. The AI education program based on design thinking will improve understanding and ability to use AI through the process of solving everyday problems with AI, and will develop the ability to create new values beyond understanding AI. It is expected that various AI education will take place in the educational field through design thinking-based artificial intelligence education programs.

  • PDF

Artificial Intelligence Application in City Marketing Strategies: Perspectives from Millennials and Generation Z

  • Yooncheong CHO
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.7-16
    • /
    • 2024
  • This study aims to explore driving factors of Artificial Intelligence application for city marketing strategy with perspectives of millennials and generation Z. This study proposed the following research questions: i) how perceived place branding factor, public service factor, affective factor, immersive experience factor, cognitive factor, cost benefit factor, social networking factor, and promotional value factor affect attitude toward AI application for city marketing; and ii) how attitude affect satisfaction and prospect toward AI application for city marketing? This study conducted an online survey with the assistance of a well-known research agency and applied factor and regression analysis to test hypotheses. The results found that effects of place branding, cognitive, social networking, and promotional value affect attitude significantly in the case of millennials, while effects of public service, affective, cost benefit, social networking, and promotional value affect attitude significantly in the case of generation Z. The results found that effects of attitude on satisfaction and prospect of AI showed significance. The results provide implications and different aspects for AI application of city marketing strategy with perspectives by generations, while millennials and generation Z perceived effects of promotional value as the most significant factor for AI application of city marketing strategy.

Exploring the Trends and Challenges of Artificial Intelligence Education through the Analysis of Newspapers in Korea, 1991-2020: A topic-modeling approach

  • Kim, Sung-ae
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.4
    • /
    • pp.216-221
    • /
    • 2020
  • Artificial intelligence (AI), an essential skill of the Fourth Industrial Revolution, is being actively taught in higher education; however, AI education is only in the preparatory stage in elementary, middle, and high schools. Investigating various newspaper articles related to AI education to date can aid in basic data collection, which is an important process in the preparatory stage. Accordingly, 13,378 newspaper articles were collected from a total of 21 newspapers, and five topics were extracted using the latent Dirichlet allocation (LDA)-based topic model along with frequency analysis. Newspaper articles from the early 2000s expanded to technologies related to the Fourth Industrial Revolution. Accordingly, education in AI fields should be linked with education in AI-based technology. In addition, efforts should be made to secure the continuity and sequence of AI education in cooperation with related higher institutions and companies.

Explainable & Safe Artificial Intelligence in Radiology (의료 영상 분석을 위한 설명 가능하고 안전한 인공지능)

  • Synho Do
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.5
    • /
    • pp.834-847
    • /
    • 2024
  • Artificial intelligence (AI) is transforming radiology with improved diagnostic accuracy and efficiency, but prediction uncertainty remains a critical challenge. This review examines key sources of uncertainty-out-of-distribution, aleatoric, and model uncertainties-and highlights the importance of independent confidence metrics and explainable AI for safe integration. Independent confidence metrics assess the reliability of AI predictions, while explainable AI provides transparency, enhancing collaboration between AI and radiologists. The development of zero-error tolerance models, designed to minimize errors, sets new standards for safety. Addressing these challenges will enable AI to become a trusted partner in radiology, advancing care standards and patient outcomes.