References
- Chua M, Kim D, Choi J, Lee NG, Deshpande V, Schwab J, et al. Tackling prediction uncertainty in machine learning for healthcare. Nat Biomed Eng 2023;7:711-718
- Candemir S, Nguyen XV, Folio LR, Prevedello LM. Training strategies for radiology deep learning models in data-limited scenarios. Radiol Artif Intell 2021;3:e210014
- Lambert B, Forbes F, Doyle S, Tucholka A, Dojat M. Improving uncertainty-based out-of-distribution detection for medical image segmentation. arXiv [Preprint]. Available at. https://doi.org/10.48550/arXiv.2211.05421. Accessed September 25, 2024
- Onder O, Yarasir Y, Azizova A, Durhan G, Onur MR, Ariyurek OM. Errors, discrepancies and underlying bias in radiology with case examples: a pictorial review. Insights Imaging 2021;12:51
- Sambyal AS, Krishnan NC, Bathula DR. Towards reducing aleatoric uncertainty for medical imaging tasks. Available at. https://doi.org/10.1109/ISBI52829.2022.9761638. Published 2022. Accessed September 25, 2024
- Monteiro M, Le Folgoc L, Coelho de Castro D, Pawlowski N, Marques B, Kamnitsas K, et al. Stochastic segmentation networks: modelling spatially correlated aleatoric uncertainty. Available at. https://proceedings.neurips.cc/paper/2020/hash/95f8d9901ca8878e291552f001f67692-Abstract.html. Published 2020. Accessed September 25, 2024
- Wang G, Li W, Aertsen M, Deprest J, Ourselin S, Vercauteren T. Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing (Amst) 2019;335:34-45
- Chung J, Kim D, Choi J, Yune S, Song KD, Kim S, et al. Prediction of oxygen requirement in patients with COVID-19 using a pre-trained chest radiograph xAI model: efficient development of auditable risk prediction models via a fine-tuning approach. Sci Rep 2022;12:21164
- Frenay B, Verleysen M. Classification in the presence of label noise: a survey. IEEE Trans Neural Netw Learn Syst 2014;25:845-869
- Rolnick D, Veit A, Belongie S, Shavit N. Deep learning is robust to massive label noise. arXiv [Preprint]. Available at. https://doi.org/10.48550/arXiv.1705.10694. Published 2017. Accessed September 25, 2024
- Jang R, Kim N, Jang M, Lee KH, Lee SM, Lee KH, et al. Assessment of the robustness of convolutional neural networks in labeling noise by using chest X-ray images from multiple centers. JMIR Med Inform 2020;8:e18089
- Ju L, Wang X, Wang L, Mahapatra D, Zhao X, Zhou Q, et al. Improving medical images classification with label noise using dual-uncertainty estimation. IEEE Trans Med Imaging 2022;41:1533-1546
- Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D. A survey of methods for explaining black box models. ACM Comput Surv 2018;51:1-42
- Castelvecchi D. Can we open the black box of AI? Nature 2016;538:20-23
- Duran JM, Jongsma KR. Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI. J Med Ethics 2021;47:329-335
- Yang G, Ye Q, Xia J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: a mini-review, two showcases and beyond. Inf Fusion 2022;77:29-52
- Kim D, Chung J, Choi J, Succi MD, Conklin J, Longo MGF, et al. Accurate auto-labeling of chest X-ray images based on quantitative similarity to an explainable AI model. Nat Commun 2022;13:1867
- Lee H, Yune S, Mansouri M, Kim M, Tajmir SH, Guerrier CE, et al. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng 2019;3:173-182
- Yoon BC, Pomerantz SR, Mercaldo ND, Goyal S, L'Italien EM, Lev MH, et al. Incorporating algorithmic uncertainty into a clinical machine deep learning algorithm for urgent head CTs. PLoS One 2023;18:e0281900