Let h ≥ 2 and A = {a0, a1, …, ak-1} be a finite set of integers. It is well-known that |hA| = hk - h + 1 if and only if A is a k-term arithmetic progression. In this paper, we give some nontrivial inverse results of the sets A with some extremal the cardinalities of hA.
Orthogonal frequency division multiplexing(OFDM) is one of the most promising technique for next generation wireless broadband communication systems. In this paper, we propose a new bit allocation algorithm in multiuser OFDM. The proposed algorithm is derived from the geometric progression of the additional transmit power of subcarriers and the arithmetic-geometric means inequality. The simulation shows that this algorithm has similar performance to the conventional adaptive bit allocation algorithm and lower computational complexity than the existing algorithms.
본 논문은 의사난수발생기로 사용할 수 있는 산술 시프트 레지스터(ASR, Arithmetic Shift Register)를 제안한다. 산술 시프트 레지스터는 $GF(2^n)$상에서 0이 아닌 초기 값에 0 또는 1이 아닌 임의의 수 D를 곱하는 수열로 정의한다. 그리고 이를 본 논문에서는 ASR-D로 표현한다. $GF(2^n)$상에서 $'D^k=1'$ 되는 t가 $'t=2^n-1'$로 유일하게 되는 비복원다항식이 ASR-D의 특성다항식이며, ASR-D의 주기는 $'2^n-1'$로 최대주기를 가진다 갈로이 선형 궤환 시프트 레지스터는 $ASR-2^{-1}$에 해당한다. 그러므로 제안하는 산술 시프트 레지스터는 갈로이 선형 제환 시프트 레지스터를 일반화한 것이다. $GF(2^n)$상의 ASR-D의 선형복잡도는 $'n{\leq}LC{\leq}\frac{n^2+n}{2}'$으로 종래의 선형 궤환 시프트 레지스터와 비교하여 안정도가 높다. 제안한 산술 시프트 레지스터의 소프트웨어 구현은 종래의 선형 제환 시프트 레지스터에 비하여 효율적이며, 하드웨어 복잡도는 동일하다. 제안한 산술 시프트 레지스터는 종래의 선형 제환 시프트 레지스터와 같이 암호, 오류수정부호, 몬테카를로 적분, 데이터통신 등 여러 분야에서 폭 넓게 사용될 수 있다.
In this study I try to show some numerical analogy between Leibniz's binary system anc I-ching's symbolic system of duo rerum principia, imagines quator, octo figurae am 64 hexagrams. But, there is really a formal logical accordance in their symbolic foundations, on which are based especially the Wittgenstein's 16 truth-tables in his Tractatus-logico-philosophicus(5.101) am 16 hexagrams, as long as we interpret with the binary values 0 am 1, i.e. the Bi-Polarity, the logical tradition from J. Boole, G. Frege through B. Russell and AN. Whitehead to R. Wittgenstein. So, I argue that the historical and theoretical root of that tradition goes back to the debate between Bouvet and Leibniz about the mathematical structure of I-ching' symbols and the Leibnizian binary arithmetic. In the letter on 4. 11. 1701 from Peking to Leibniz, Bouvet wrote that the I-Ching's symbolism has an analogous structure with Leibniz's binary arithmetic. Corresponding to his suggestion, but without exact knowledge, in the letter of 2. January 1967 to the duke August in Braunschweig-Lueneburg-Wolfenbuettel had Leibniz shown already an original idea for the creation of the world with imago Dei which comes from binary progression, dark and light on water.
This paper investigated policies that drive the sustainable management of Ivorian forest which disappear at an annual rate of 250000 hectares. Based on an inter-temporal model for optimum allocation of forest land to three competing uses, the article found that sustainability depends on the incentive structure, of which forest taxes and fees are a key, though obviously not the sole, component. The study proposed to increase the area fee level by accounting for environmental externalities generated by forest harvesters and farmers. The paper showed that the area fee is a decreasing function of the forest natural rate of regeneration and the reconversion rate of agricultural surfaces. Finally, at the given forest natural rate of regeneration and the reconversion rate of agricultural surfaces, the model argued that the area fee need to be progressive (arithmetic progression) in the context of ecological equilibrium break while it should remain constant in normal situation.
An adaptive modulation scheme is presented for multiuser orthogonal frequency-division multiplexing systems. The aim of the scheme is to minimize the total transmit power with a constraint on the transmission rate for users, assuming knowledge of the instantaneous channel gains for all users using a combined bit-loading and subcarrier allocation algorithm. The subcarrier allocation algorithm identifies the appropriate assignment of subcarriers to the users, while the bit-loading algorithm determines the number of bits given to each subcarrier. The proposed bit-loading algorithm is derived from the geometric progression of the additional transmission power required by the subcarriers and the arithmetic-geometric means inequality. This algorithm has a simple procedure and low computational complexity. A heuristic approach is also used for the subcarrier allocation algorithm, providing a trade-off between complexity and performance. Numerical results demonstrate that the proposed algorithms provide comparable performance with existing algorithms with low computational cost.
In the present paper is presented a new matrix pencil-based numerical approach achieving the computation of the elemen-tary divisors of a given matrix $A \in C^{n\timesn}$ This computation is at-tained without performing similarity transformations and the whole procedure is based on the construction of the Piecewise Arithmetic Progression Sequence(PAPS) of the associated pencil $\lambda I_n$ -A of matrix A for all the appropriate values of $\lambda$ belonging to the set of eigenvalues of A. This technique produces a stable and accurate numerical algorithm working satisfactorily for matrices with a well defined eigenstructure. The whole technique can be applied for the computation of the first second and Jordan canonical form of a given matrix $A \in C^{n\timesn}$. The results are accurate for matrices possessing a well defined canonical form. In case of defective matrices indications of the most appropriately computed canonical form. In case of defective matrices indication of the most appropriately computed canonical form are given.
If an arithmetic progression F of length 2n and the number k with 2k$\leq$n are give, can we find two monic polynomials with the same degrees whose set of all zeros form F such that both the number of bad pairs and the number of nonreal zeros are 2k? We will consider the case that both the number of bad pairs and the number of nonreal zeros are two. Moreover, we will see the fundamental relation between the number of bad pairs and the number of nonreal zeros, and we will show that the polynomial in x where the coefficient of x(sup)k is the number of sequences having 2k bad pairs has all zeros real and negative.
We propose a neural network solver for an inverse problem. The problem is that input data with complete teaching include defects and predict the defect value. The solver is constructed of a three layer neural network whose learning method is combined from BP and reconstruction learning. The input data for the defects are unknown; therefore, the circulation of an arithmetic progression replaces them; rightly, the learning procedure is not converged for the circulation data vut for the normal data. The learning is quitted after such a learning status id kept. Then, we search a minimum of the differences between teaching data and output of the circulation. Then, we search a minimum of the ...
Let r ≥ 2, and let ki ≥ 2 for 1 ≤ i ≤ r. Mixed van der Waerden's theorem states that there exists a least positive integer w = w(k1, k2, k3, …, kr; r) such that for any n ≥ w, every r-colouring of [1, n] admits a ki-term arithmetic progression with colour i for some i ∈ [1, r]. For k ≥ 3 and r ≥ 2, the mixed van der Waerden number w(k, 2, 2, …, 2; r) is denoted by w2(k; r). B. Landman and A. Robertson [9] showed that for k < r < $\frac{3}{2}$(k - 1) and r ≥ 2k + 2, the inequality w2(k; r) ≤ r(k - 1) holds. In this note, we establish some results on w2(k; r) for 2 ≤ r ≤ k.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.