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SOME INVERSE RESULTS OF SUMSETS

Min Tang and Yun Xing

Abstract. Let h ≥ 2 and A = {a0, a1, . . . , ak−1} be a finite set of

integers. It is well-known that |hA| = hk − h + 1 if and only if A is
a k-term arithmetic progression. In this paper, we give some nontrivial

inverse results of the sets A with some extremal the cardinalities of hA.

1. Introduction

Let [a, b] denote the interval of integers n such that a ≤ n ≤ b. Let A =
{a0, a1, . . . , ak−1} be a finite set of integers such that a0 < a1 < · · · < ak−1, we
define

d(A) = gcd(a1 − a0, a2 − a0, . . . , ak−1 − a0).

Let a′i = (ai − a0)/d(A), i = 0, 1, . . . , k − 1. We call

A(N) = {a′0, a′1, . . . , a′k−1}
the normal form of the set A. For any integer c, we define the set

c + A = {c + a : a ∈ A}.
For any finite set of integers A and any positive integer h ≥ 2, let

hA = {a1 + · · ·+ ah : a1, . . . , ah ∈ A}.
It is easy to see that |hA| =

∣∣hA(N)
∣∣. For given set A, a direct problem is

to determine the structure and properties of the h-fold sumset hA when the
set A is known. An inverse problem is to deduce properties of the set A from
properties of the sumset hA.

The following two results gave the simple lower bound of the cardinality of
hA and showed that the lower bound is attained if and only if the set is an
arithmetic progression.

Theorem A ([11], Theorem 1.3). Let h ≥ 2. Let A be a finite set of integers
with |A| = k. Then

|hA| ≥ hk − h + 1.
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Theorem B ([11], Theorem 1.6). Let h ≥ 2. Let A be a finite set of integers
with |A| = k. Then |hA| = hk − h + 1 if and only if A is a k-term arithmetic
progression.

In 1959, Freiman [2] proved the following result:

Theorem C. Let k ≥ 3. Let A = {a0, a1, . . . , ak−1} be a set of integers such
that 0 = a0 < a1 < · · · < ak−1 and gcd(A) = 1. Then

|2A| ≥ min{ak−1, 2k − 3}+ k =

{
ak−1 + k, if ak−1 ≤ 2k − 3,

3k − 3, if ak−1 ≥ 2k − 2.

In [1], [3], [8], [12], the authors generalized the above theorem to the case of
summation of two distinct sets. In 1959, Freiman [2] (see also [11]) investigated
the structure of set A if the cardinality of 2A is between 2k − 1 and 3k − 4.

Theorem D ([11], Theorem 1.16). Let A be a set of integers such that |A| =
k ≥ 3. If |2A| = 2k − 1 + b ≤ 3k − 4, then A is a subset of an arithmetic
progression of length k + b ≤ 2k − 3.

In 1996, Lev [7] gave the following result:

Theorem E ([7], Theorem 1). Let h, k ≥ 2 be integers. Let A = {a0, a1, . . .,
ak−1} be a set of integers such that 0 = a0 < a1 < · · · < ak−1 and gcd(A) = 1.
Then

|hA| ≥ |(h− 1)A|+ min{ak−1, h(k − 2) + 1}.

For other related problems, see [4–6], [9–11], [13].
In this paper, we consider the following inverse problem: assume that A

is a finite integer set and the cardinalities of hA are extremal cases, how to
determine the structure of the set A? We obtain the following results:

Theorem 1.1. Let h ≥ 2 and k ≥ 5 be integers. Let A be an integer set with
|A| = k. If hk − h + 1 < |hA| ≤ hk + h− 2, then

A(N) = [0, k] \ {i}, 1 ≤ i ≤ k − 1.

Moreover, |hA| = hk for i = 1 or k − 1, and |hA| = hk + 1 for 2 ≤ i ≤ k − 2.

Theorem 1.2. Let h ≥ 2 and k ≥ 5 be integers. Let A be an integer set with
|A| = k. If hk + h− 2 < |hA| ≤ hk + 2h− 3, then

A(N) = [0, k + 1] \ {i, j}, 1 ≤ i < j ≤ k + 1.

Moreover, we have
(a) |hA| = hk + h − 1 for h = 2, 2 ≤ i ≤ k − 2, j = k + 1 and {i, j} =

{1, 2}, {k − 1, k}, {1, k}, {1, 3}, {k − 2, k};
(b) |hA| = hk + h for i = 1 and 4 ≤ j ≤ k− 1 when h ≥ 2; or 2 ≤ i ≤ k− 3

and j = k when h ≥ 2, or {i, j} = {2, 3}, {k − 2, k − 1} when h = 2;
(c) |hA| = hk + h + 1 for 2 ≤ i < j ≤ k − 1, except for {i, j} = {2, 3}, {k −

2, k − 1} when h = 2.
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Remark 1.3. By Theorem 1.1 and Theorem 1.2 we know that there is no set A
such that |3A| = 3k − 1.

2. Lemmas

Lemma 2.1. Let h ≥ 2 and k ≥ 5 be integers. Let A = {a0, a1, . . . , ak−1}
be a set of integers such that 0 = a0 < a1 < · · · < ak−1 and gcd(A) = 1. If
|hA| ≤ hk + 2h− 3, then ak−1 ≤ k + 1. Moreover, if |hA| ≤ hk + h− 2, then
ak−1 ≤ k.

Proof. By Theorem E, we have

|hA| ≥ |(h− 1)A|+ min{ak−1, h(k − 2) + 1}
≥ |(h− 2)A|+ min{ak−1, h(k − 2) + 1}+ min{ak−1, (h− 1)(k − 2) + 1}
≥ · · · · · ·

...(2.1)

≥ |A|+ min{ak−1, h(k − 2) + 1}+ · · ·+ min{ak−1, 2(k − 2) + 1}.
If |hA| ≤ hk+ 2h−3, then ak−1 ≤ 2(k−2) + 1. Otherwise, if ak−1 ≥ 2k−2,

then by (2.1) and k ≥ 5, we have

|hA| ≥ k + (h− 2)(2k − 2) + 2k − 3 > hk + 2h− 3,

which is impossible. Thus, again by (2.1) we have

hk + 2h− 3 ≥ |hA| ≥ k + (h− 1)ak−1,

hence ak−1 ≤ k + 1.
If |hA| ≤ hk+h−2, then by the above discussion, we have ak−1 ≤ 2(k−2)+1.

Thus, by (2.1) we have hk + h− 2 ≥ |hA| ≥ k + (h− 1)ak−1, hence ak−1 ≤ k.
This completes the proof of Lemma 2.1. �

Lemma 2.2. Let i, j be positive integers such that i ≥ 2 and j ≥ i + 2. Put
A = [0, i− 1] ∪ [i + 1, j]. Then hA = [0, hj] for all h ≥ 2.

Proof. We have

(2.2) [0, hi− h] ∪ [hi + h, hj] ⊂ hA.

Write
A1 = {i− 2, i− 1}, A2 = {i + 1, i + 2}.

Since i ≥ 2 and j ≥ i + 2, we have A1 ∪A2 ⊂ A.
For h ≥ 2, we have hi − h + 3l + 1 ≥ hi − 2h + 3(l + 1) for all 0 ≤ l ≤ h.

Thus

h(A1 ∪A2) =

h⋃
l=0

((h− l)A1 + lA2)

=

h⋃
l=0

(
[(i− 2)(h− l), (i− 1)(h− l)] + [l(i + 1), l(i + 2)]

)
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=

h⋃
l=0

[hi− 2h + 3l, hi− h + 3l](2.3)

= [hi− 2h, hi + 2h].

By (2.2) and (2.3), we have hA = [0, hj].
This completes the proof of Lemma 2.2. �

Lemma 2.3. Let i, j be positive integers such that i ≥ 2 and j ≥ i + 3. Put
A = [0, i− 1] ∪ [i + 2, j]. Then hA = [0, hj] for all h ≥ 3.

Proof. We have

(2.4) [0, hi− h] ∪ [hi + 2h, hj] ⊂ hA.

Write

A1 = {i− 2, i− 1}, A2 = {i + 2, i + 3}.
Since i ≥ 2 and j ≥ i + 3, we have A1 ∪A2 ⊂ A.

For h ≥ 3, we have hi − h + 4l + 1 ≥ hi − 2h + 4(l + 1) for all 0 ≤ l ≤ h.
Thus

h(A1 ∪A2) =

h⋃
l=0

((h− l)A1 + lA2)

=

h⋃
l=0

(
[(i− 2)(h− l), (i− 1)(h− l)] + [l(i + 2), l(i + 3)]

)
=

h⋃
l=0

[hi− 2h + 4l, hi− h + 4l](2.5)

= [hi− 2h, hi + 3h].

By (2.4) and (2.5), we have hA = [0, hj].
This completes the proof of Lemma 2.3. �

3. Propositions

Proposition 3.1. Let h ≥ 2, k ≥ 4 be positive integers and A(N) = [0, k]\{i}
for some i ∈ [1, k]. Then

(1) If i = k, then
∣∣hA(N)

∣∣ = hk − h + 1;

(2) If i = 1 or k − 1, then
∣∣hA(N)

∣∣ = hk;

(3) If 2 ≤ i ≤ k − 2, then
∣∣hA(N)

∣∣ = hk + 1.

Proof. (1) If A(N) = [0, k − 1], then hA(N) = [0, hk − h], we have
∣∣hA(N)

∣∣ =
hk − h + 1.

(2) If i = 1, then A(N) = {0} ∪ [2, k]. We have

1 /∈ hA(N), {0} ∪ [2h, hk] ⊂ hA(N).
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For 2 ≤ m ≤ 2h − 1, let rm be the least nonnegative residue of m modulo 2,
we have 2 + rm ∈ A(N) and

m = 2 + · · ·+ 2︸ ︷︷ ︸+ 0 + · · ·+ 0︸ ︷︷ ︸+(2 + rm).
m−rm

2 − 1 copies h− m−rm
2 copies

Hence, we have |hA(N)| = hk.
If i = k − 1, then by

A(N) = [0, k − 2] ∪ {k} = k − ({0} ∪ [2, k]),

we have
∣∣hA(N)

∣∣ = hk.

(3) If 2 ≤ i ≤ k − 2, then A(N) = [0, i − 1] ∪ [i + 1, k]. By Lemma 2.2, we
have hA(N) = [0, hk]. Thus

∣∣hA(N)
∣∣ = hk + 1.

This completes the proof of Proposition 3.1. �

Proposition 3.2. Let h ≥ 2, k ≥ 5 be positive integers and A(N) = [0, k +
1]\{i, i + 1} for some i ∈ [1, k]. Then

(1) If i = k, then
∣∣hA(N)

∣∣ = hk − h + 1;

(2) If i = 1 or k − 1, then
∣∣hA(N)

∣∣ = hk + h− 1;

(3) If 2 ≤ i ≤ k − 2, then
∣∣hA(N)

∣∣ = hk + h + 1 for h ≥ 3. For h = 2 and

i = 2 or k − 2, we have
∣∣2A(N)

∣∣ = 2k + 2; For h = 2 and 3 ≤ i ≤ k − 3, we

have
∣∣2A(N)

∣∣ = 2k + 3.

Proof. (1) If A(N) = [0, k−1], then by Theorem B, we have hA(N) = [0, hk−h].
(2) If A(N) = {0} ∪ [3, k + 1], then

1, 2 /∈ hA(N), {0} ∪ [3h, hk + h] ⊂ hA(N).

For 3 ≤ m ≤ 3h − 1, let rm be the least nonnegative residue of m modulo 3.
Noting that rm + 3 ∈ A(N) and 1 ≤

⌊
m−rm

3

⌋
≤ h− 1, we have

m = 3 + · · ·+ 3︸ ︷︷ ︸+ (3 + rm)+ 0 + · · ·+ 0︸ ︷︷ ︸ .
m−rm

3 − 1 copies h− m−rm
3 copies

Hence, |hA(N)| = hk + h− 1.
If A(N) = [0, k − 2] ∪ {k + 1}, then by

A(N) = (k + 1)− ({0} ∪ [3, k + 1]) ,

we have |hA(N)| = hk + h− 1.
(3) If 2 ≤ i ≤ k − 2, then

A(N) = [0, i− 1] ∪ [i + 2, k + 1].

If h ≥ 3, then by Lemma 2.3 we have hA(N) = [0, hk + h], thus |hA(N)| =
hk + h + 1.

If i = 2 and h = 2, then

A(N) = {0, 1} ∪ [4, k + 1],



310 M. TANG AND Y. XING

thus 2A(N) = {0, 1, 2} ∪ [4, 2k + 2], we have |2A(N)| = 2k + 2. If 3 ≤ i ≤ k − 2
and h = 2, then

2A(N) = [0, 2i− 2] ∪ [i + 2, k + i] ∪ [2i + 4, 2k + 2].

If i ≤ k − 3, then 2A(N) = [0, 2k + 2]; if i = k − 2, then 2A(N) = [0, 2k − 2] ∪
[2k, 2k + 2]. Hence, |2A(N)| = 2k + 2 or 2k + 3.

This completes the proof of Proposition 3.2. �

Proposition 3.3. Let h ≥ 2, k ≥ 5 be positive integers and A(N) = [0, k +
1]\{i, i + 2} for some i ∈ [1, k − 1]. Then

(1) If i = k − 1, then
∣∣hA(N)

∣∣ = hk;

(2) If i = 1 or k − 2, then
∣∣hA(N)

∣∣ = hk + h− 1;

(3) If 2 ≤ i ≤ k − 3, then
∣∣hA(N)

∣∣ = hk + h + 1.

Proof. (1) If i = k− 1, then A(N) = [0, k− 2]∪ {k}. By Proposition 3.1(2), we
have |hA(N)| = hk.

(2) If i = 1, then A(N) = {0} ∪ {2} ∪ [4, k + 1]. We have

1, 3 /∈ hA(N), {0, 2} ∪ [4h, hk + h] ⊂ hA(N).

For 4 ≤ m ≤ 4h− 1, let rm be the least nonnegative residue of m modulo 4.
Then 1 ≤

⌊
m−rm

4

⌋
≤ h− 1. If rm = 0 or 1, then

m = 4 + · · ·+ 4︸ ︷︷ ︸+ 0 + · · ·+ 0︸ ︷︷ ︸+(4 + rm).
m−rm

4 − 1 copies h− m−rm
4 copies

If rm = 2 or 3, then

m = 4 + · · ·+ 4︸ ︷︷ ︸+ 0 + · · ·+ 0︸ ︷︷ ︸+2 + (2 + rm).
m−rm

4 − 1 copies h− m−rm
4 − 1 copies

Hence, |hA(N)| = hk + h− 1.
If i = k − 2, then

A(N) = (k + 1)− ({0} ∪ {2} ∪ [4, k + 1]) .

Thus |hA(N)| = hk + h− 1.
(3) If 2 ≤ i ≤ k − 3, then A(N) = [0, i− 1] ∪ {i + 1} ∪ [i + 3, k + 1]. Thus

[0, hi− h] ∪ {hi + h} ∪ {hi + 3h, hk + h} ⊂ hA(N).

Now we shall show that h(i−1)+m,h(i+1)+m ∈ hA(N) for 1 ≤ m ≤ 2h−1.
For m = 1 we have

h(i− 1) + 1 = (i− 1) + · · ·+ (i− 1)︸ ︷︷ ︸+(i− 2) + (i + 1),

h− 2 copies

h(i + 1) + 1 = (i + 1) + · · ·+ (i + 1)︸ ︷︷ ︸+(i− 1) + (i + 4).

h− 2 copies
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For 2 ≤ m ≤ 2h − 1, let rm be the least nonnegative residue of m modulo 2.
Then 1 ≤

⌊
m−rm

2

⌋
≤ h− 1, we have

h(i− 1) + m = (i− 1) + · · ·+ (i− 1)︸ ︷︷ ︸+(i− 1− rm)

h− 1− m−rm
2 copies

+ (i + 1) + · · ·+ (i + 1)︸ ︷︷ ︸+(i + 1 + 2rm),

m−rm
2 − 1 copies

h(i + 1) + m = (i + 1) + · · ·+ (i + 1)︸ ︷︷ ︸+ (i + 3) + · · ·+ (i + 3)︸ ︷︷ ︸
h− m−rm

2 copies
m−rm

2 − 1 copies

+(i + 3 + rm),

Hence, |hA(N)| = hk + h + 1.
This completes the proof of Proposition 3.3. �

Proposition 3.4. Let h ≥ 2, k ≥ 5 be positive integers and A(N) = [0, k +
1]\{i, j} for some i ∈ [1, k − 2], j ≥ i + 3.

(1) If i = 1 and j = k + 1, then
∣∣hA(N)

∣∣ = hk;

(2) If i = 1 and j = k, then
∣∣hA(N)

∣∣ = hk + h− 1;

(3) If i = 1, 4 ≤ j ≤ k − 1; or 2 ≤ i ≤ k − 3, j = k, then
∣∣hA(N)

∣∣ = hk + h;

(4) If 2 ≤ i ≤ k − 2, j = k + 1, then
∣∣hA(N)

∣∣ = hk + 1;

(5) If 2 ≤ i ≤ k − 3 and j ≤ k − 1, then
∣∣hA(N)

∣∣ = hk + h + 1.

Proof. (1) If i = 1 and j = k + 1, then A(N) = {0} ∪ [2, k]. By Proposition
3.1(2), we have

∣∣hA(N)
∣∣ = hk.

(2) If i = 1 and j = k, then A(N) = {0} ∪ [2, k − 1] ∪ {k + 1}. By the proof
of Proposition 3.1(2), we have {0} ∪ [2, hk − h] ⊂ hA(N).

For 1 ≤ m ≤ 2h− 2, let rm be the least nonnegative residue of m modulo 2.
Then

h(k−1)+m = (k−1)+ · · ·+(k−1)︸ ︷︷ ︸+ (k+1)+ · · ·+(k+1)︸ ︷︷ ︸+(k−1−rm).

h− 1− m+rm
2 copies

m+rm
2 copies

Noting that hk + h− 1 6∈ hA(N), we have |hA(N)| = hk + h− 1.
(3) If i = 1 and 4 ≤ j ≤ k − 1, then

A(N) = {0} ∪ [2, j − 1] ∪ [j + 1, k + 1].

By the proof of Proposition 3.1(2) we have

{0} ∪ [2, hj − h] ⊂ hA(N).

Noting that

[j − 2, j − 1] ∪ [j + 1, j + 2] ⊂ A(N),

by the proof of Lemma 2.2 we have [hj − 2h, hj + 2h] ⊂ hA(N).
Hence, |hA(N)| = hk + h.
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If 2 ≤ i ≤ k − 3 and j = k, then

A(N) = [0, i− 1] ∪ [i + 1, k − 1] ∪ {k + 1} =: A1 ∪ {k + 1}.

By Lemma 2.2, we have hA1 = [0, h(k−1)]. By the proof of Proposition 3.4(2),
we have

[hk − h + 1, hk + h− 2] ⊂ hA(N) and hk + h− 1 /∈ hA(N).

Hence, |hA(N)| = hk + h.
(4) If i = k− 2 and k = k+ 1, then A(N) = [0, k− 3]∪{k− 1, k}. By Lemma

2.2 we have |hA(N)| = hk + 1.
If 2 ≤ i ≤ k − 3 and j = k + 1, then

A(N) = [0, i− 1] ∪ [i + 1, k].

By Lemma 2.2, we have hA(N) = [0, hk], thus |hA(N)| = hk + 1.
(5) If 2 ≤ i ≤ k − 3 and j ≤ k − 1, then

A(N) = [0, i− 1] ∪ [i + 1, j − 1] ∪ [j + 1, k + 1].

By Lemma 2.2 we have [0, h(j − 1)] ⊂ hA(N). Noting that

[j − 2, j − 1] ∪ [j + 1, j + 2] ⊂ A(N),

by the proof of Lemma 2.2 we have [hj − 2h, hj + 2h] ⊂ hA(N).
Hence, |hA(N)| = hk + h + 1.
This completes the proof of Proposition 3.4. �

4. Proof of Theorem 1.1

If hk − h + 1 < |hA| ≤ hk + h − 2, then by Lemma 2.1, we have A(N) =
[0, k]\{i} for some i ∈ [1, k]. By Proposition 3.1, we have |hA| = hk or |hA| =
hk + 1.

Again by Proposition 3.1, we have |hA| = hk if and only if A(N) = [0, k]\{i}
with i = 1 or k − 1; |hA| = hk + 1 if and only if A(N) = [0, k] \ {i} with some
2 ≤ i ≤ k − 2.

This completes the proof of Theorem 1.1.

5. Proof of Theorem 1.2

If hk + h − 2 < |hA| ≤ hk + 2h − 3, then by Lemma 2.1, we have A(N) =
[0, k + 1]\{i, j} for some 1 ≤ i < j ≤ k + 1. By Propositions 3.2-3.4, we have
|hA| = hk + h− 1, hk + h or |hA| = hk + h + 1.

Again by Proposition 3.1, we have (a), (b) and (c).
This completes the proof of Theorem 1.2.
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