• Title/Summary/Keyword: arbitrary polygon

Search Result 15, Processing Time 0.021 seconds

A Study on Classification Algorithm of Arbitrary Polygon Curved Hull Plates for the Curved Hull Plates Forming (곡가공을 위한 임의 다각형 곡판 분류 알고리즘 연구)

  • Kim, Chan Suk;Son, Seung Hyeok;Shin, Jong Gye;Noh, Jackyou
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.342-348
    • /
    • 2014
  • In general, the forming process of the curved hull plates consists of sub tasks, such as roll bending, line heating, and triangle heating. In order to complement the automated curved hull forming system, it is necessary to develop an algorithm to classify the curved hull plates of a ship into standard shapes with respect to the techniques of forming task, such as the roll bending, the line heating, and the triangle heating. In the previous research, the classification algorithm of curved hull plates was studied only about rectangle shaped plates, and other limitations were notified. In this paper, the classification algorithm is extended to classify not only rectangle shaped plates but also arbitrary polygon hull plates. The discrete curvature can be computed by using arbitrary polygon mesh which is represented by half-edge data structure and discrete differential geometry. The algorithm tests to verify the developed algorithm with sample plates of a real ship data have been performed.

Filling Holes in Large Polygon Models Using an Implicit Surface Scheme and the Domain Decomposition Method

  • Yoo, Dong-Jin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.3-10
    • /
    • 2007
  • A new approach based on implicit surface interpolation combined with domain decomposition is proposed for filling complex-shaped holes in a large polygon model, A surface was constructed by creating a smooth implicit surface from an incomplete polygon model through which the actual surface would pass. The implicit surface was defined by a radial basis function, which is a continuous scalar-value function over the domain $R^{3}$. The generated surface consisted of the set of all points at which this scalar function is zero. It was created by placing zero-valued constraints at the vertices of the polygon model. The well-known domain decomposition method was used to treat the large polygon model. The global domain of interest was divided into smaller domains in which the problem could be solved locally. The LU decomposition method was used to solve the set of small local problems; the local solutions were then combined using weighting coefficients to obtain a global solution. The validity of this new approach was demonstrated by using it to fill various holes in large and complex polygon models with arbitrary topologies.

Polygon Reduction Algorithm for Three-dimensional Surface Visualization (3차원 표면 가시화를 위한 다각형 감소 알고리즘)

  • 유선국;이경상;배수현;김남현
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.368-373
    • /
    • 2004
  • Surface visualization can be useful, particularly for internet-based education and simulation system. Since the mesh data size directly affects the downloading and operational performance, the problem that should be solved for efficient surface visualization is to reduce the total number of polygons, constituting the surface geometry as much as Possible. In this paper, an efficient polygon reduction algorithm based on Stokes' theorem, and topology preservation to delete several adjacent vertices simultaneously for past polygon reduction is proposed. The algorithm is irrespective of the shape of polygon, and the number of the polygon. It can also reduce the number of polygons to the minimum number at one time. The performance and the usefulness for medical imaging application was demonstrated using synthesized geometrical objects including plane. cube. cylinder. and sphere. as well as a real human data.

A Study on Filling Holes of the Polygon Model using Implicit Surface Scheme (음함수 곡면기법을 이용한 폴리곤 모델의 홀메움에 관한 연구)

  • Yoo Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.107-114
    • /
    • 2005
  • A new approach which combines implicit surface scheme and point projection method is presented in order to fill the arbitrarily shaped holes in the polygon model. In the method a trimmed surface which has an outer boundary curve is generated by using the implicit surface scheme and normal projection of point onto the base surface. The base surface is constructed by creating smooth implicit surface from the incomplete polygon model through which the surface should pass. In this paper an implicit surface is defined by a radial basis function, a continuous scalar-valued function over the domain $R^3$. The base surface is the set of all points at which this scalar function takes on the value zero and is created by placing zero-valued constraints at the vertices of the polygon model. In order to show the validity of the present study, various hole fillings are carried out for the complex polygon model of arbitrary topology.

A Study on Filling Holes of Large Polygon Model using Implicit Surface Scheme and Domain Decomposition Method (음함수 곡면기법과 영역 분할법을 이용한 대형 폴리곤 모델의 홀 메움에 관한 연구)

  • Yoo Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.174-184
    • /
    • 2006
  • In order to fill the holes with complex shapes in the large polygon model, a new approach which is based on the implicit surface interpolation method combined with domain decomposition method is presented. In the present study, a surface is constructed by creating smooth implicit surface from the incomplete polygon model through which the surface should pass. In the method an implicit surface is defined by a radial basis function, a continuous scalar-valued function over the domain $R^3$ The generated surface is the set of all points at which this scalar function takes on the value zero and is created by placing zero-valued constraints at the vertices of the polygon model. In this paper the well-known domain decomposition method is used in order to treat the large polygon model. The global domain of interest is divided into smaller domains where the problem can be solved locally. LU decomposition method is used to solve a set of small local problems and their local solutions are combined together using the weighting coefficients to obtain a global solution. In order to show the validity of the present study, various hole fillings are carried out fur the large and complex polygon model of arbitrary topology.

Heuristic Physical Theory of Diffraction for Impedance Polygon

  • Lee, Keunhwa;Park, Sanghyun;Kim, Kookhyun;Seong, Woojae
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.22-32
    • /
    • 2013
  • A heuristic physical theory of diffraction (PTD) for an acoustic impedance wedge is proposed. This method is based on Ufimtsev's three-dimensional PTD, which is derived for an acoustic soft or hard wedge. We modify the original PTD according to the process of physical optics (or the Kirchhoff approximation) to obtain a 3D heuristic diffraction model for an impedance wedge. In principle, our result is equivalent to Luebbers' model presented in electromagnetism. Moreover, our approach provides a useful insight into the theoretical basis of the existing heuristic diffraction methods. The derived heuristic PTD is applied to an arbitrary impedance polygon, and a simple PTD formula is derived as a supplement to the physical optics formula.

Shape Deformation of Triangular Net (삼각망의 형상 변형)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.134-143
    • /
    • 2007
  • A new approach based on mean value coordinate combined with Laplacian coordinate is proposed for shape deformation of a large polygon model composed of triangular net. In the method, the spherical mean value coordinates for closed control meshes is introduced to describe a vertex in the triangle meshes to be deformed. Furthermore, the well known quardratic least square method for the Laplacian coordinates is employed in order to deform the control meshes. Because the mean value coordinates are continuous and smooth on the interior of control meshes, deforming operation of control meshes change the shape of polygon model while preserving the intrinsic surface detail. The effectiveness and validity of this novel approach was demonstrated by using it to deform large and complex polygon models with arbitrary topologies.

Circuit and Symbolic Extraction from VLSI Layouts of Arbitrary Shape (임의의 각도를 갖는 VLSI 레이아웃에서의 회로 및 심볼릭 추출)

  • 문인호;이용재;황선영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.1
    • /
    • pp.48-59
    • /
    • 1992
  • This paper presents the design of a layout processing system that performs circuit and symbolic extraction from hierarchical designs containing arbitrarily shaped layout. The system is flexible enough to deal with various technologies, MOS or bipolar, by providing extraction rules in the form of technology files. In this paper, new efficient algorithms for trapezoidal decomposition of polygon and symbolic path extraction using trapezoidal template are proposed for symbolic extraction. Circuit and symbolic extractor is developed as an integrated design environment of SOLID system.

  • PDF

A Triangulation and Guard Sufficiency Set of the Hierarchy of Simple Polygons (단순 다각형 계층구조에서의 삼각화와 경비가능충분집합)

  • Yang, Tae-Cheon
    • The KIPS Transactions:PartA
    • /
    • v.15A no.5
    • /
    • pp.295-300
    • /
    • 2008
  • In this paper, we consider a characterization of a Guard Sufficiency Set(GSS) in the hierarchy of simple polygons. we propose the diagonals of a arbitrary triangulation of a polygon as a GSS when guards see the diagonals with completely visibility and both sides of the diagonal. we show that this can be a GSS in convex polygons, unimodal polygons, spiral polygons but this can not be a GSS in star-shaped polygons, monotone polygons, completely external visible polygons.

A Study on Generation of the Advanced Laser Scanning Path for Stereolithography using Voronoi Diagrams (Voronoi Diagram 을 이용한 Stereo;ithography 의 향상된 레이져 주사경로 생성에 관한 연구)

  • 이기현;최홍태;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.405-409
    • /
    • 1997
  • Voronoi diagrams are applied in varios field such as NC toolpath generation, VLSI design and robot path planning because of their geometric charcteristics. In this paper, Voronoi diagrams are introduced on polygon constructed by line segments only and with constant offset. Bisector curves for two arbitrary objects, which is the combination of line segment and arc, are defined as parametric fuction where the parameter is used as offset. Offset curves are applied on the generation of laser scanning path for the stereolithography and shows a good result from several examples.

  • PDF