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Abstract 
 

A heuristic physical theory of diffraction (PTD) for an acoustic impedance wedge is proposed. This method is 

based on Ufimtsev’s three-dimensional PTD, which is derived for an acoustic soft or hard wedge. We modify the 

original PTD according to the process of physical optics (or the Kirchhoff approximation) to obtain a 3D heuristic 

diffraction model for an impedance wedge. In principle, our result is equivalent to Luebbers’ model presented in 

electromagnetism. Moreover, our approach provides a useful insight into the theoretical basis of the existing heu-

ristic diffraction methods. The derived heuristic PTD is applied to an arbitrary impedance polygon, and a simple 

PTD formula is derived as a supplement to the physical optics formula. 
 

Keywords: Physical Theory of Diffraction, Kirchhoff Approximation, Impedance Polygon, Heuristic Approach, Physical Op-

tics 

 

 
 
1. Introduction  

Diffraction may be as important as reflection in 

investigations of wave propagation in a complex 

environment or high frequency scattering from an 

object. Diffraction contributes to wave propagation 

within the shadow zone that is unreachable by re-

flected rays, and plays a main role in wave scatter-

ing in a non-specular direction.  

Traditional high-frequency diffraction methods are 

usually categorized into Keller’s geometrical theory 

of diffraction (GTD) [1], which was later modified 

into the uniform theory of diffraction (UTD) [2] by 

removing the singularity, and Ufimtsev’s physical 

theory of diffraction (PTD) [3]. The above methods 

were essentially developed for the perfectly con-

ducting wedge (the soft wedge in acoustics), which 

is capable of being modeled by the closed analytic 

solution from the canonical wedge problem.  Sub-

sequently, some authors have applied rigorous dif-

fraction theory to the impedance wedge. However, 

most of these theories have been based on Mali-

uzhinets’ solution [4, 5], which is expressed by a 

computationally intensive mathematical function 

and thus is not widely used in practical modeling. 

To address this difficulty, Luebbers [6, 7] suggested 

a heuristic modification to the original UTD for a 

non-perfectly conducting wedge, and a series of 

related studies on this heuristic UTD have been 

presented by a few authors [8-17] in the radio wave 

community. Although there have been no attempts 

to account for the physical basis of Luebbers’ modi-

fication, his heuristic UTD has been practically 

applied in many different fields, including commu-

nication channel modeling and radar modeling. 

Otherwise, to our knowledge, there have been no 

*
Corresponding author. Tel.: ++82-2-880-7332, Fax.: ++82-2-888-9298, 

E-mail address: wseong@snu.ac.kr 

Copyright ©  KSOE 2013. 

 



 Keunhwa Lee, Sanghyun Park, Kookhyun Kim and Woojae Seong 

 International Journal of Ocean System Engineering 3(1) (2013) 22-32 23 

 

 

studies on heuristic diffraction theory based on the 

PTD. 

The objective of this paper is to develop a new 

heuristic PTD for the acoustic impedance wedge, 

along with a formula for the diffraction field of the 

impedance polygon. The derivation of this work 

differs from other UTD studies in that it follows the 

approach of Ufimstev’s 3D PTD [3]. The derived 

heuristic PTD will supplement physical optics (PO) 

models [18-20] for an impedance object and will 

help clarify the validity of existing heuristic ap-

proaches. In Section 2, the heuristic PTD for an 

edge is formulated from the Kirchhoff-Helmholtz 

integral equation and compared with Luebbers’ 

heuristic UTD. The derived heuristic PTD is then 

extended for the impedance polygon in Section 3. 

Numerical examples comparing the heuristic PTD 

and the rigorous solution obtained by the boundary 

element method are provided in Section 4. Section 

5 presents the conclusions. 

2. Heuristic PTD for Acoustic Impedance 

Wedge 

2.1 PTD for Soft or Hard Wedge 

The physical theory of diffraction (PTD) [3, 12] is 

a high-frequency asymptotic technique applied to 

wave diffraction/scattering. The PTD considers a 

scattering field that consists of radiation from ele-

mentary sources distributed on an object’s surface. 

These elementary sources are divided into both 

uniform and non-uniform sources. The uniform 

sources are induced on the object’s surface by the 

Kirchhoff approximation (KA). All of the other 

sources are considered to be non-uniform sources, 

and they are concentrated near the edges. 

 
Fig. 1. Basic coordinate system used for wedge. 

Consider an oblique incident plane wave 
incp

in 

relation to a soft or hard wedge (Fig. 1). The 0-face 

of the wedge is parallel to the xz-plane in a rectan-

gular coordinate system, and the n-face is folded as 

the wedge’s external angle , greater than  . 
incp

is incident on the edge with bearing angle 

0  and elevation angle 0 . The receiver is ori-

ented with bearing angle 


 and elevation angle 

 . The incident wave is defined as 

0 1 0cos cos( )

0

jkz jk r
p e e

    

, where k is the medi-

um wave number and 1 0sink k 
; then, the 

total wave field 
,

t

s hp
 is respectively expressed for 

a soft or hard wedge as follows [3]. 
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
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  using Sommer-

feld’s integral contour D [22], and ,

go

s hp
 repre-

sents the geometrical plane waves composed of the 

incident and reflected plane waves. 

The uniform sources 

(0)

,s hj
 for a soft or hard 

wedge are expressed by KA as follows. 
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where / n   is the normal derivative for the 

surface. 

The non-uniform sources are defined using Eq. (1) 

as follows. 
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and 

 

0

(1) (0)

cos

0 1 0 1 0

 

= [ ( , ) ( , )] 

 at =0,
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 
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j p j
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Then, the physical optics (PO) and PTD field are 

calculated using the radiation integral for the object 

surface as follows. 
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where 
| ' |r r

is the distance between the receiv-

er position vector r and the position vector on the 

object surface 

'

BS
, 'r . 

The non-uniform source in Eq. (6) includes a 

complex integral and is difficult to calculate. To 

simplify Eq. (6), Ufimtsev adopts the integral ap-

proximation of the stationary phase method togeth-

er with an analytic calculation of the complex inte-

gral, which produces a line integral for the differen-

tial edge between two faces. Then, Eq. (6) is written 

as 
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where L  is the edge of the wedge, 


 is the cur-

vilinear coordinate along the edge, and R  is the 

distance between the position vector of the receiver 

and the position vector of the differential edge. The 

PTD diffraction coefficients 
(1) ( , )sF    and 

(1) ( , )hF    and their related parameters are given in 

Appendix A. 

Eq. (7) appears to be limited to the canonical 

acoustic wedge, which is paradoxical since the 

wedge has an infinite edge length. We address this 

by adopting the asymptotic localization principle 

for the high frequency range, such that the non-

uniform sources are asymptotically equivalent to 

the components induced on the canonical wedge 

tangent to the real edge. Then, Eq. (7) is applicable 

to arbitrary smooth edges of finite length. 

2.2 Heuristic PTD for Impedance Wedge 

Consider the Kirchhoff-Helmholtz integral equa-

tion for the external scattering from an object [23]. 
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  (8) 

 

where 0r  is the source position vector, and 
t s incp p p   is the total wave field for an imped-

ance object with scattering wave field 
sp

 and 

incident wave field 
incp

. 

By the Kirchhoff approximation for the impedance 

wedge, the PO field is obtained with the plane wave 

reflection coefficient R̂ , and is given by  
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where 

'

BS
 represents the illuminated wedge sur-

face. Notice that the reflection coefficient is a func-

tion of the grazing angle, which is the acute angle 

between the incident wave direction vector and its 
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orthogonally projected vector on the object surface. 

When both faces of the wedge are illuminated, two 

reflection coefficients for the 0-face and n-face 

have to be used. 

Comparing the above equation with Eq. (5) for a 

soft or hard wedge, we observe that the PO field for 

an impedance object is created by two types of uni-

form sources. The first is a monopole-type source 

equivalent for a soft wedge, and the other is a di-

pole-type source for a hard wedge. Let each uni-

form source be defined as 

 

(0) (0)0

0

( ' | )ˆ(1 ) ,   

ˆ(1 ) ( ' | ) on the illuminated part


 


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inc

m d

inc

p r r
j R j

n

R p r r

 (10) 

 

The equivalent total wave fields for the impedance 

wedge, corresponding to the monopole-type and 

dipole-type uniform sources of Eq. (10), may be 

respectively designed with the plane reflection co-

efficient defined in the PO field, so that 
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The geometric field in Eqs. (11) and (12) is as-

sumed to be equal to that obtained by the Kirchhoff 

approximation, and the diffraction field is convert-

ed into the diffraction field for a soft or hard wedge 

when ˆ 1 1 R or . This is the only rule used to design 

our heuristic PTD. Furthermore, it should be noted 

that there can be many heuristic models based on 

how the rigorous field for an impedance wedge is 

described. For example, in the above equations, R̂  

need not be the physical reflection coefficient. Any 

function with greater accuracy can be applied to 

Eqs. (11) and (12) instead. 

The non-uniform sources can be written as follows. 
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When these non-uniform sources are inserted into 

the radiation integral equation, the result is  
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where 
'

BS  is the total surface of the wedge. 

Eq. (14) can be further simplified using the PTD 

described in Section 2.1. The final equation for the 

PTD field is expressed as 
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Here, (1) (1) (1) im d mF F F  and the heuristic coeffi-

cients (1)

dF  and (1)

mF  are obtained as follows. 
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and 

 

(1)

0 1 0

2

2 0 0

1 ˆ( , ) [(1 ) ( , )
2

ˆ                               (1 ) ( , )]sin

   

   

  

  

m

n

F R U

R U

   

  (17) 

 

where the reflection coefficient 
0R̂  is for the 0-

face and ˆ
nR  is for the n-face. 

Finally, the total wave field for an impedance 

wedge can be obtained as the sum of the PO field of 

Eq. (9) and the PTD field of Eq. (15). 

2.3 Comparison with Luebbers’ UTD model 

Luebbers’ model is based on the two-dimensional 
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UTD model for a perfectly conducting wedge. This 

model overcomes the singularity problem of GTD 

on the reflection/shadow boundary by introducing 

the Fresnel integral. The heuristic diffraction coef-

ficient of Luebbers’ model is shown in Appendix B. 

In this section, the physical origin of Luebbers’ 

model is examined by comparing it with our heuris-

tic PTD coefficients.  

We start by transforming the 3D coefficients of Eqs. 

(16) and (17) into 2D coefficients. Consider that 

0     and the scattering direction lies on the 

Keller cone (
0    ). Then, the heuristic 3D PTD 

coefficients (1)

,m dF  are transformed by Eqs. (A.1)–

(A.8) into 

 

(1) 0 0 0
0

0 0

0 0 0

ˆ(1 ) ( ) ( )
( , ) cot cot

2 4 2 / 2 /

ˆ(1 ) ( ) ( )
                  cot cot

4 2 / 2 /

ˆ( )(1 ) ( )
                   cot

4 2

       
 

    

      

    

    

         
       

    

         
     

    

  




m

n

R
F

R

R 0

0 0 0

( )
cot

2

ˆ( )(1 ) ( ) ( )
                   cot cot

4 2 2

  

        

     
    

   

          
     

    

nR

 

 

and 

 

(1) 0 0 0
0

0 0

0 0 0

ˆ(1 ) ( ) ( )
( , ) cot cot

2 4 2 / 2 /

ˆ(1 ) ( ) ( )
                  cot cot

4 2 / 2 /

ˆ( )(1 ) ( )
                   cot

4 2

       
 

    

      

    

    

         
       

    

         
     

    

  




d

n

R
F

R

R 0

0 0 0

( )
cot

2

ˆ( )(1 ) ( ) ( )
                   cot cot

4 2 2

  

        

     
    

   

          
     

    

nR

 

 

In the above equations, the first and second terms 

result from the canonical wedge solution, while the 

third and fourth terms are contributed from the 

physical optics term. 

The 2D heuristic PTD coefficient 
(1)
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Fig. 2. Definition of coordinate system and vectors used 

for general definition of coordinate system. 

Comparing the above equation to Luebbers’ Eq. 

(B.1), it can be observed that they have similar 

structures, with the exception of the physical optics 

terms in our PTD model and the Fresnel integral in 

Luebbers’ UTD model (which was used to remove 

the diffraction coefficient singularity). This allows 

us to conclude that Luebbers’ model is essentially 

similar to the 2D reduction form of our PTD model, 

and is also based on the equivalent impedance 

wedge solution expressed by Eqs. (11) and (12). 

One difference between them is the definition of 

the grazing angle in the 0-face and the n-face re-

flection coefficients. Our model’s reflection coeffi-

cients are a function of the real grazing angle be-

tween the incident wave vector and its orthogonally 

projected vector on the 0-face or n-face, while 

Luebbers considers 
0R̂  to be a function of 0  

and ˆ
nR  to be a function of   .  

As described in Section 2.2, since the reflection 

coefficient in the heuristic diffraction coefficient 

can be modified to improve the prediction, it is 

difficult to determine which is correct. To examine 

its validity, a numerical example is provided in 

Section 4. . 

3. PTD Formula for Acoustic Impedance Pol-

ygon 

In this section, the heuristic PTD is applied to the 

impedance polygon, and a simple formula for the 

PTD field is derived. This PTD formula is used to 

address the PO’s shortcomings. 

As in [24], consider a polygon facet with n  ver-

tices, as shown in Fig. 2. The edges of this polygon 

are connected to the edges of neighboring polygons 

(not shown in the figure). We define 
RR  to be the 

vector drawn from the origin of the facet to the 

receiver point, SR  to be the vector drawn from the 

origin of the facet to the source point, and ia  to be 

the vector drawn from the origin of the facet to the 

i th vertex. Also, 1 i i ib a a  with 
1 1 na a . 

The line vector equation for the i th edge is 

1( ) / 2   i i i ia a bt  ( 0.5 0.5  t ). Then, the 

vector from the point of the i th edge to the receiv-

er point is  
iRd R iR R , and the vector from the 

point of the i th edge to the source point is 

 
iSd S iR R .  

Consider from the spherical wave field that 
| |

/ (4 | |) Sdi

i

jk Rinc

Sdp e R  is incident on the i th 

edge. The PTD field in the receiver point is ob-

tained using Eq. (15) by 

 
| | | |

(1) (1)

| |

2 ( , )
4 | | 4 | |

  
 

 
Sd Rdi i

i ii

jk R jk R

s

i im i i i

Sd Rdb

e e
p F d

R R
  (21) 

 

We define 

 

1( ) / 2  
iSc S i iR R a a , 1( ) / 2  

iRc R i iR R a a ,

/ | |  
i ii Sc ScR R , / | |

i i in Rc RcR R R , and 

 
ii i nw R . Then using the far field assumption, 

Eq. (21) is calculated by 

 
( )(1)

( )(1)

2

| |

( ) 0.5(1)
( )

2

0.5

( )(1)

2

2 ( , )

(4 )

2 ( , )
      | |

(4 )

2 ( , )
      | | s

(4 )

 




 



 

























Sd Rdi i

i i

i i i

Sd Rdi i

i i

i i

Sd Rdi i

i i

jk R R

jk w b ts im i i
i i

Sd Rd b

jk R R

jk w b tim i i
i

Sd Rd

jk R R

im i i
i

Sd Rd

F e
p e d

R R

F e
b e dt

R R

F e
b

R R

( )
inc

2

 
 
 

i ik w b

  

 (22) 

 

where X  represents | |X . 

With the PTD field for the i th edge, the total 

PTD field for a polygon facet with n edges is writ-
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ten as follows: 

 

(1)

2

( )

(1)

1

1

(4 )

( )
     2 | | ( , )sinc

2



 







 
 
 


Sd Rdi i

i i

s

jk R Rn
i i

i im i i

i Sd Rd

p

k w b e
b F

R R

 

 (23) 

 

The above equation is the formula for the PTD field 

corresponding to the PO field for an impedance 

polygon as described in [3].  

4. Numerical Results 

In this section, we demonstrate the usefulness of 

the proposed heuristic PTD formulation by compar-

ing the results of the three solutions for the 2D 

acoustic impedance wedge, using Luebbers’ dif-

fraction coefficient, our newly proposed version, 

and the rigorous diffraction coefficient (i.e., Mali-

uzhinets’ solution) as a reference. 

 

 
(a) 

 

 

(b) 

 

Fig. 3. Comparison of different diffraction fields for wedge 

angle α = 300°. 

(a) Incident angle 
0  = 55° (one face) and (b) Incident 

angle 
0  = 135° (two faces). 

 

 
(a) 

 

 

(b) 

 

Fig. 3. Comparison of different diffraction fields for wedge 

angle α = 300°. 

(a) Incident angle 
0  = 55° (one face) and (b) Incident 

angle 
0  = 135° (two faces). 

 

We consider the source illumination on one or two 

faces of the wedge. The wedge is characterized by ρ 

= 2300 m
3
/kg and c = 5600 m/s (glass). The medi-

um outside the wedge is characterized by ρ = 1000 

m
3
/kg and c = 1500 m/s (water). A 5-kHz frequency 

source is located 100 m from the edge of the wedge, 

and the observation points are located around an arc 

in steps of 5° with a radius of 100 m centered at the 

edge. In the present numerical results, we compare 

three different wedge angles (α = 300°, 270°, 210°) 

for various incident angles. As seen in Figs. 3 to 5, 

the magnitude of the proposed solution is very simi-

lar to Luebbers’ solution. After testing at different 

values of 0

0 0( 0 )   , we found that our proposed 

solution agrees well with the rigorous solution, 

except within a very limited region. A clear differ-

ence between the proposed and rigorous solutions 

can be seen in the illumination and shadow regions, 

near the shadow/reflection boundaries for different 

angles of incidence 0 . Moreover, the proposed 

solution is closer to Maliuzhinets’ solution than 

Luebbers’ solution for a given wedge angle (Fig. 3).  
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(a) 

 

 

(b) 

 

Fig. 4. Comparison of different diffraction fields for wedge 

angle α = 270°.  

(a) Incident angle 
0  =4 0° (one face) and (b) Incident 

angle 
0  = 130° (two faces). 

 

Next, to test the accuracy of the proposed heuristic 

3D PTD for an arbitrary impedance polygon, we 

compare the numerical results for the total field (i.e., 

the sum of the scattering and diffraction fields) 

using the heuristic PTD and those from the rigorous 

solution obtained using the boundary element 

method. As an example, we investigate plane wave 

scattering from a box. The box [depicted in the 

inset of Fig. 6(a)] is a 10 ×  3 × 1 3in  rectangular 

box modeled using 5878 rectangular facets, and the 

parameters of the incident field are chosen to be f = 

1 kHz, incident angle 0 0

0 00 , 0    QUOTE 

D. The distance from the 

source to the origin of the employed coordinates is 

1000 m [Fig. 6(a)]. The observation regions are on 

the xz-plane (γ = -70°~70°, ϑ = 0°) and yz-plane (γ 

= -70°~70°, ϑ = 90°). The points are located around 

an arc in steps of 1°, with a radius of 1000 m cen-

tered at the origin. 

 

(a) 

 

 

(b) 

 

Fig. 5. Comparison of different diffraction fields for wedge 

angle α = 210°.  

(a) Incident angle 
0  = 15° (one face) and (b) Incident 

angle 
0  =105° (two faces). 

 

The impedance of the scatterer is the same as for 

the previous wedge (glass). As a reference for the 

rigorous solution we used SYSNOISE [25] soft-

ware based on the boundary element method 

(BEM). The results obtained by this simulation 

were validated by comparing the scattering patterns 

extracted from the BEM code. Fig. 6 shows the 

scattering patterns in the xz- and yz-planes generat-

ed by the two methods and compared at f = 1 kHz. 

For the 3D impedance polygon, the results of this 

work agree well with the rigorous solution, except 

within a very limited region.  

5. Conclusion 

This paper described a newly proposed diffraction 

model for an arbitrary impedance polygon, which 

applies a heuristic modification to the physical the-

ory of diffraction (PTD). Numerical results were 

presented that showed the usefulness and accuracy 

of the proposed method for the 2D wedge and 3D 

impedance polygon. 
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(a) 

 

 

(b) 

 

Fig. 6. Scattering patterns of 10 × 3 × 1 box modeled with 

5878 rectangular facets 

in (a) xz-plane at f = 1 kHz and (b) yz-plane at f = 1 kHz. 

 

The proposed model was verified in relation to the 

accuracy of the solution and the application to a 

real impedance polygon by comparing its results 

with the numerical results from the rigorous Mali-

uzhinets’ solution and BEM solution.  

Appendix A. PTD coefficients of Ufimtsev for 

soft/hard wedge 

In the coordinates of Fig. 1, the 3D PTD coeffi-

cients for a soft or hard wedge are given by [3]: 

 
(1) 2

1 0 2 0 0[ ( , ) ( , )]sin        sF U U  

  (A.1) 

 

and 

 
(1)

1 0

2 0 0

[ ( , )sin

( , )sin( )]sin sin

  

      

 

  

hF V

V             
 

  (A.2) 

 

In the above relations, U and V are calculated 

using the following equations. 

 

 
1 0 1 0 0 1 0( , ) ( , ) ( , )      tU U U . 

  (A.3) 

 
1 0 1 0 0 1 0( , ) ( , ) ( , )      tV V V . 

 (A.4) 

 

1 0

1 0 1 0

2

0

( , )

( ) ( )
cot cot

2 sin 2 2

 

      

   

  
  

 

tU

 

 (A.5) 

 

0 1 0

0 1 0 1 0

2

0

( , )

( )
cot cot

2sin 2 2

 

     



  
  

 

U

         
 

 (A.6) 

 

1 0 2

0 1

1 0 1 0

( , )
2 sin sin

( ) ( )
cot cot

2 2


 

  

     

 



  
 

 

tV

              

 

 (A.7) 

 

0
0 1 0 2

0 1

1 0 1 0

( )
( , )

2sin sin

cot cot
2 2

 
 

 

   



  
 

 

V

                     

 

 (A.8)  

 Here, 
0

0

1, 0
( )

0,

 
 

 
 
 otherwise

     

      
,  

1 0 0cos sin sin cos cos cos       ,  

 and 
2

0 1
1 2

0

cos cos
cos

sin

 





 . 

 

Appendix B. Heuristic UTD coefficients of Lueb-

bers 

The 2D heuristic diffraction coefficient from 

Luebbers is written as follows [6]: 

 

0

0
0

0
0

0
0 0 0

0
0

( , )

( )
cot ( ( ))

2 2 /

( )
cot ( ( ))

2 /

( )ˆ ( )cot ( ( ))
2 /

( )ˆ ( )cot ( ( ))
2 /

 

   
 

  

  
 

 

  
  

 

  
   

 











   
  

 

  
  

 

  
  

 

   
    

  
n

D

F kLa

F kLa

R F kLa

R F kLa
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  (B.1) 

where L is a distance parameter dependent on the 

nature of the incident wave,  

 

2

( ) 2  


  
jx j

x

F x j xe e d  (B.2) 

 

and  

 

2 2
2cos

2

 
  
  

 

N
a  (B.3) 

 

In Eq. (B.3), N 

are integers and most nearly 

satisfy  

 

2     N   (B.4) 

 

Eq. (B.1) is slightly different from Eq. (5) from 

Luebbers’ work, in that the notation is changed in 

accordance with the acoustic problem, and the di-

rectivity pattern of the original form is only consid-

ered for comparison with our heuristic PTD . 
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