• 제목/요약/키워드: approximation function

검색결과 1,091건 처리시간 0.028초

HIGH ACCURACY POINTS OF WAVELET APPROXIMATION

  • Kwon, Soon-Geol
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.69-78
    • /
    • 2009
  • The accuracy of wavelet approximation at resolution h = $2^{-k}$ to a smooth function f is limited by O($h^M$), where M is the number of vanishing moments of the mother wavelet ${\psi}$; that is, the approximation order of wavelet approximation is M - 1. High accuracy points of wavelet approximation are of interest in some applications such as signal processing and numerical approximation. In this paper, we prove the scaling and translating properties of high accuracy points of wavelet approximation. To illustrate the results in this paper, we also present two examples of high accuracy points of wavelet approximation.

  • PDF

ASYMPTOTIC APPROXIMATION OF KERNEL-TYPE ESTIMATORS WITH ITS APPLICATION

  • Kim, Sung-Kyun;Kim, Sung-Lai;Jang, Yu-Seon
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.147-158
    • /
    • 2004
  • Sufficient conditions are given under which a generalized class of kernel-type estimators allows asymptotic approximation on the modulus of continuity. This generalized class includes sample distribution function, kernel-type estimator of density function, and an estimator that may apply to the censored case. In addition, an application is given to asymptotic normality of recursive density estimators of density function at an unknown point.

SOBOLEV TYPE APPROXIMATION ORDER BY SCATTERED SHIFTS OF A RADIAL BASIS FUNCTION

  • Yoon, Jung-Ho
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.435-443
    • /
    • 2007
  • An important approach towards solving the scattered data problem is by using radial basis functions. However, for a large class of smooth basis functions such as Gaussians, the existing theories guarantee the interpolant to approximate well only for a very small class of very smooth approximate which is the so-called 'native' space. The approximands f need to be extremely smooth. Hence, the purpose of this paper is to study approximation by a scattered shifts of a radial basis functions. We provide error estimates on larger spaces, especially on the homogeneous Sobolev spaces.

Analytical Approximation Algorithm for the Inverse of the Power of the Incomplete Gamma Function Based on Extreme Value Theory

  • Wu, Shanshan;Hu, Guobing;Yang, Li;Gu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권12호
    • /
    • pp.4567-4583
    • /
    • 2021
  • This study proposes an analytical approximation algorithm based on extreme value theory (EVT) for the inverse of the power of the incomplete Gamma function. First, the Gumbel function is used to approximate the power of the incomplete Gamma function, and the corresponding inverse problem is transformed into the inversion of an exponential function. Then, using the tail equivalence theorem, the normalized coefficient of the general Weibull distribution function is employed to replace the normalized coefficient of the random variable following a Gamma distribution, and the approximate closed form solution is obtained. The effects of equation parameters on the algorithm performance are evaluated through simulation analysis under various conditions, and the performance of this algorithm is compared to those of the Newton iterative algorithm and other existing approximate analytical algorithms. The proposed algorithm exhibits good approximation performance under appropriate parameter settings. Finally, the performance of this method is evaluated by calculating the thresholds of space-time block coding and space-frequency block coding pattern recognition in multiple-input and multiple-output orthogonal frequency division multiplexing. The analytical approximation method can be applied to other related situations involving the maximum statistics of independent and identically distributed random variables following Gamma distributions.

함수근사를 위한 서포트 벡터 기계의 커널 애더트론 알고리즘 (Kernel Adatron Algorithm of Support Vector Machine for Function Approximation)

  • 석경하;황창하
    • 한국정보처리학회논문지
    • /
    • 제7권6호
    • /
    • pp.1867-1873
    • /
    • 2000
  • 함수근사는 과학과 고학부야에서 공범위하게 응용된다. 시포트 벡터 기계(support vector machine, SVM)는 원래 분류를 위해 계안되어져 문자인식, 얼굴인식 등의 응용분야에서 좋은 결과를 보여주고 있다. 최근 SVM이론 함수근사로 확장되어 많이 활용되려 하고 있다. 그러나 함수근사를 위한 SVM 알고리즘은 QP(quadratic proramming)문제와 관련되어있어 계산에 시간이 걸리며 QP를 위한 패키지가 있어야 한다. 본 논문에서는 함수근사를 위해 커널-애더트론 알고리즘을 이용한 SVM을 제안하고 QP를 이용한 SVM과 성능을 비교하고자 한다.

  • PDF

노드 모니터링에 의한 효율적인 LDPC 디코딩 알고리듬 (Efficient LDPC Decoding Algorithm Using Node Monitoring)

  • 서희종
    • 한국전자통신학회논문지
    • /
    • 제10권11호
    • /
    • pp.1231-1238
    • /
    • 2015
  • 본 논문에서는 노드 모니터링(NM)과 Piecewise Linear Function Approximation(: NP)을 사용하여 LDPC 디코딩 알고리듬의 계산복잡도를 감소시키는 알고리듬을 제안한다. 이 알고리듬은 기존의 알고리듬보다도 더 효율적이다. 제안된 알고리즘이 기존의 방법보다도 개선되었다는 것을 확인하기 위해서 모의실험을 하였다. 실험결과, 제안된 알고리즘의 계산은 기존의 방법에 비해 약 20 % 향상되었음을 확인하였다.

Bayesian Estimation of the Reliability Function of the Burr Type XII Model under Asymmetric Loss Function

  • Kim, Chan-Soo
    • Communications for Statistical Applications and Methods
    • /
    • 제14권2호
    • /
    • pp.389-399
    • /
    • 2007
  • In this paper, Bayes estimates for the parameters k, c and reliability function of the Burr type XII model based on a type II censored samples under asymmetric loss functions viz., LINEX and SQUAREX loss functions are obtained. An approximation based on the Laplace approximation method (Tierney and Kadane, 1986) is used for obtaining the Bayes estimators of the parameters and reliability function. In order to compare the Bayes estimators under squared error loss, LINEX and SQUAREX loss functions respectively and the maximum likelihood estimator of the parameters and reliability function, Monte Carlo simulations are used.

CIRCLE APPROXIMATION BY QUARTIC G2 SPLINE USING ALTERNATION OF ERROR FUNCTION

  • Kim, Soo Won;Ahn, Young Joon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권3호
    • /
    • pp.171-179
    • /
    • 2013
  • In this paper we present a method of circular arc approximation by quartic B$\acute{e}$zier curve. Our quartic approximation method has a smaller error than previous quartic approximation methods due to the alternation of the error function of our quartic approximation. Our method yields a closed form of error so that subdivision algorithm is available, and curvature-continuous quartic spline under the subdivision of circular arc with equal-length until error is less than tolerance. We illustrate our method by some numerical examples.

고속 도함수 근사화에 의해 개선된 무요소법을 이용한 선형탄성 고체문제의 응력해석 (Stress Analysis of Linear Elastic Solid Problems by using Enhanced Meshfree Method based on Fast Derivatives Approximation)

  • 이상호;김효진;윤영철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.583-590
    • /
    • 2002
  • Point collocation method based on the fast derivatives approximation of meshfree shape function is applied to solid mechanics in this study. Enhanced meshfree approximation with approximated derivative of shape function is reviewed, and formulation of linear elastic solid mechanics by point collocation method is presented. It implies that governing equation of solid mechanics with strong form is directly formulated without no numerical integration cells or grid. The regularity of weight function is not required due to a use of approximated derivative, so we propose the exponential type weight function that is discontinuous in first derivative. The convergence and stability of the proposed method is verified by passing the generalized patch test. Also, the efficiency and applicability of the proposed method in solid mechanics is verified by solving types of solid problems. Numerical results show that not only a use of proposed weight function leads lower error and higher convergence rate than that of the conventional weight functions, but also the improved collocation method with derivative approximation enables to compute the derivatives of shape function very fast and accurately enough to replace the classical direct derivative calculation.

  • PDF