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Bayesian Estimation of the Reliability Function of the
Burr Type XII Model under Asymmetric Loss
Function*

Chansoo Kim?

Abstract

In this paper, Bayes estimates for the parameters k, ¢ and reliability func-
tion of the Burr type XII model based on a type II censored samples under
asymmetric loss functions viz., LINEX and SQUAREX loss functions are
obtained. An approximation based on the Laplace approximation method
(Tierney and Kadane, 1986) is used for obtaining the Bayes estimators of
the parameters and reliability function. In order to compare the Bayes es-
timators under squared error loss, LINEX and SQUAREX loss functions
respectively and the maximum likelihood estimator of the parameters and
reliability function, Monte Carlo simulations are used.

Keywords: Burr type XII distribution; Laplace approximation; LINEX loss function;
SQUAREX loss function.

1. Introduction

The two-parameter Burr Type XII distribution was first introduced in the
literature Burr (1942). Its probability density function, cumulative distribution
function are given by respectively,

f(@) = ckz® (1 + 29~ 2 ¢ k>0,
Fz)=1-(142%"% (1.1)

and the reliability function, R(t) = (1 4 t°)*.
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Its capacity to assume various shapes often permits a good fit when used
to describe biological, clinical or other experimental data. The usefulness and
properties of the Burr distribution as a failure model are discussed by Dubey
(1972, 1973). Some early works can be found in Papadopoulos (1978), Al-Hussaini
and Jaheen (1992, 1994), Moore and Papadopoulos (2000) and Ali Mousa and
Jaheen (2002).

In the most of approaches, the squared error loss function was used for ob-
taining the Bayes estimates. But, the symmetric nature of squared error loss
(SEL) gives equal weight to overestimation as well as underestimation, while in
the estimation of parameter of lifetime model overestimation may be more serious
than underestimation or vice-versa. Inappropriateness of SEL has been noticed
by Zellner (1986). A number of asymmetric loss functions were proposed for
their use. Among these, one of the most popular asymmetric loss function is the
LINEX loss function which is introduced by Varian (1975) and further properties
of the LINEX loss function have been investigated by Zellner (1986). Thompson
and Basu (1996) introduced a further generalization of the LINEX loss function,
the SQUAREX loss function, in the context of system reliability estimation.
Chaturvedi et al. (2000) showed that a Bayes estimator under SQUAREX loss
function is a weighted average of a Bayes estimator under LINEX loss function
and a Bayes estimator under squared error loss function.

The SQUAREX loss function has the following form;

L(A) = b(e®® 4+ dA% — aA - 1), (1.2)

where |a| # 0, byd > 0 and A = 6 — 6 denotes the scalar estimation error
in using 0 to estimate 0. If d = 0, SQUAREX and LINEX loss functions are
identical. Hence, SQUAREX loss function represents a generalization of LINEX
loss function; it is a richer family of asymmetric loss functions that are appropriate
when estimating system reliability.

In this paper, Bayes estimators for the parameters k, ¢ and reliability function
R(t) of the Burr type XII model are obtained based on a type II censored sam-
ples in section 2. In Section 3, the Laplace approximation(Tierney and Kadane,
1986) is used for obtaining the Bayes estimators of the parameters and reliability
function. In Section 4, in order to compare MLE and Bayes estimators, these
estimators are computed via Monte Carlo simulation study.
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2. Bayes Estimation

Let X7 < X9 < --- < X, be a censored sample of size r obtained from Burr
type XII distribution with probability density function (1.1). Then the likelihood

function of ¢ and k on x = (z1,...,z,) is given by
n! s
L k — 'r‘k'r 2
(k; clx) (n—r)!c ZI:—[l(l-i—wf)

X exp (—k (i log(1 +z§) + (n —r)log(1 + xﬁ))) (21
i=1

The log-likelihood function is proportional to
l(k,c) x rlogc+rlogk

+(c—-1) i logz; — (k+ 1) log(l + z5) — (n — r)klog(l + z5). (2.2)
i=1

Assuming that the parameters ¢ and k are both unknown, the maximum
likelihood estimate (MLE) kyLe and éy e of k and ¢ can be obtained iteratively
by solving two equations which differentiate the equation in (2.2) with respect
to k and ¢ and equate each to zero. For a given ¢, the MLE R(t)arg can be
obtained by replacing & by kyie and ¢ by émrg in (1.1).

Since the parameter k and ¢ are assumed to be unknown, Al-Hussaini and
Jaheen (1992) suggested a bivariate prior density as the following forms;

m(k, c) = mi(klc)ma(c), (2.3)
where
T atia ke 1,7>0 2.4
kle) = —— —— - .
M) = gy R e (-5) > -1y > (2.4
is a gamma prior density function when ¢ is known and
w(c)——l—‘;_lex L 8>0,0>0 (2.5)
AT P\TE) T |

is a gamma prior density function. Therefore, the bivariate prior density of & and
¢ can be written as

c<5+a ko

69 = o P (5 1 8) ) (29
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It follows from (2.1) and (2.6) that the joint posterior density function of k and
c given X is proportion to

r a:?_l
w(k, c|z) o THOteagatT H ( L )

C
Py 1+

c

X exp {—k (; In(l1+zf)+ (n—7r)In(1 + z¢) + s) - B} . (2.7

Let ¢(c, k) be a function of the parameters k and ¢. Then the Bayes estimator
¢ser of a function ¢(k, ¢) relative to SEL takes the form

bsEL = E(¢(k7‘0)|X), (2.8)

where E(-|X) denotes a posterior expectation.
Under LINEX loss function given in (1.2) with d = 0, the Bayes estimator
¢rrx of a function ¢(c, k) is obtained by

- 1
— —a¢(k,c)
dLIx = - In (E(e |X))

_ —éln ( / / e k) (k, c|:1c)dkdc> . (2.9)

The above Bayes estimators ng&SEL and J)L 1x in (2.8) and (2.9) can not be derived
in a closed form. Therefore, in such situations, we can use numerical integration
technique, which can be computationally intensive, especially in a high dimen-
sional parameter space. Ome can also use approximate methods such as the
approximate form due to Lindley (1980) or that of Tierney and Kadane (1986).
We adopt here the Tierney and Kadane (1986) approximation.

Also, under SQUAREX loss function given in (1.2), the Bayes estimator ¢?SQ X
of a function ¢(c, k) is

- N 1 2d - .
$sQx = brrx + In <1 + ;(QSSEL - ¢SQX)> (2.10)
where &5 rr, and qng x are the Bayes estimators relative to SEL and LINEX loss

function. The above Bayes estimator (2.10) can be solved numerically to get
¢sox, but explicit expressions for this estimator can not be obtained.
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Remark 2.1 For small values of a, the SQUAREX loss function is almost
symmetric and not far from a squared error loss function. On expanding e*® =
1+ aA + (a®A?/2), L(A) = b((a?/2) + d) A?, a squared error loss function. In
this case, the Bayes estimates of the parameters k£ and ¢ and reliability function
under SQUAREX and LINEX loss functions are not far different from those
obtained with a squared error loss function.

Remark 2.2 2. If d in equation (2.10) is small in comparison to a so that the
terms of order O ((d/a)) is negligible, then (2.10) can be approximately rewritten
as ) .
a?¢rrx + 2dPsEL

a? +2d
The above Bayes estimator gz§ apy under the SQUAREX loss function is a weighted
average of the Bayes estimator under LINEX loss function and the Bayes estima-

(2.11)

baPM =

tor under the squared error loss function.

3. Laplace Approximation

Let 0 = (c,k) and [(#;x) be the likelihood function of 6 based on the n
observations and m(6]z) denote the posterior distribution of 8. Then the posterior
mean of a function ¢(f) can be written as

enL*
BOOIX) = [ somlon =520 5.)
where
1
L9) = Elnﬂ'(0|x),
L*(6) = L(0) + %m $(0).

Following Tierney and Kadane (1986), equation (3.1) can be approximated as
following forms;

BOX) = () e (n(e67) - L)

I\ 2 ¢(6")n(6])
_(IEI) T (3.2)

where §* and § maximize L*(6) and L(8), respectively and =* and ¥ are minus
the inverse Hassians of L*(9) and L(#) at §* and 6 respectively.
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We apply this approximation to obtain the Bayes estimators of the parameters
k, c and the reliability function R(t) given by (1.1). In this case, the functions
L* and L are given by respectively

L(c, k) = % ((r+5+a)lnc+(a+r)lnk+(c— 1)ilnxi—%
i=1
—(k+1)iln(1+mf) —(n—7r)kln(l + z£) — %) (3.3)
i=1
and !
L*(c,k) = L(c, k) + - In ¢(c, k). (3.4)

Let L1 = dL(c, k) /08¢, Ly= OL(c,k)/0k, L1y = 0?L{c,k)/dc%, L2 = 8*L(c, k)
/8cOk and Lgy = 0%L(c,k)/0k? be the first and second derivatives of L(c, k).
Then, the posterior mode (¢, l;;) is obtained by equating L, and Ly to zero and
solving the resulting nonlinear equations in ¢ and k. From L;;, L;2 and Log, one

can see that 1

Y=
2 Ly1Lyy — L2,

(3.5)
evaluated at the posterior mode (&, k).

Similar derivatives are needed to determine the mode (&*, k*) of L*(c, k) and
|£*|. Let Lt = OL*(c,k)/0c, Ly = OL*(c,k)/0k, L}, = 02L*(c, k)/0c%, L}, =
0%?L*(c,k)/0cOk and L, = 82L*(c,k)/0k? be the first and second derivatives of
L*(c, k). Differentiate (3.4) with respect to c and k and equate each result L] and
L3 to zero. The mode (&, k*) of ¢ and k can be obtained iteratively by solving
the two resulting equations. Using L}, L], and L3,, we get

1

E = s
L11L22 - Ll%

(3.6)

evaluated at the posterior mode (&, k*).

Remark 3.1 All of these values of L*(c, k) and the first and second deriva-
tives of L*(c, k) can be found if ¢(c, k) has an explicit functional form in the
parameters ¢ and k.
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Substituting from (3.5) and (3.6) in (3.2), the Bayes estimator ¢rrx of a
function ¢(c, k) under LINEX loss function takes of the form

brix=—tmn { (Lt =1’ as(e*,k*)w(a*,k*\w)} .6

o \\EiiLs - L2 (&, klz)

where 7(c, k|z) is the posterior density function given by (2.7) evaluated at the
modes (&*,k*) and (¢, k) of the functions L*(c, k) and L(c, k), respectively.

Under SQUAREX loss function, the Bayes estimator ¢A>SQX of a function
¢(c, k) given by (2.10) can be solved by Newton-Raphson iteration scheme using
the nonlinear equations as following forms;

exp(al$ — duix) + (9~ dspr) ~1=0. (39

The solution of equation given by (3.8) yields the Bayes estimator: qASSQ x under
SQUAREX loss function.

Remark 3.2 From (3.7), the Bayes estimators érrx, krrx and R(t)ux of
the parameters ¢, k and the reliability function of R(t) for a given ¢(c, k) takes
the following forms respectively.

1 If ¢(c, k) = e~ then L*(¢, k) = L(c, k) — ac/n.

1 ~
Li1Loo — L2\ 2 e— 9" (> k*
éle=—lln{( 11722 L12) ¢ (e k lx)}’

a L L3y — L7 (&, k|z)

where L(c, k) is given by (3.3).
2 If ¢(c, k) = e 9 then L*(c, k) = L(c, k) — ak/n.

1 - ~
R 1 Li1Loo — L2 5 ,—ak* ok Lk
kpix =——1In < il 32 ig) € T(CA ,K|z) )
a L1, L3y — L3 7 (¢, k|x)

3 If ¢(c,k) = R(t) = exp (—a(1l +t°)7%) then L*(c, k) = L(c, k) — (a/n)(1 +
)k,

A ! { (L11L22 - Lg2>% exp (—a(1+ 7)) n(er, b*[o) }

R t LIX — —=In " " =

4 For ¢(c,k)as given by 1, 2 and 3, the Bayes estimators relative to SQUAREX
loss function, ésgx, ksgx and R(t)sgx, are obtained by using (3.8).
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4. Illustrative Examples

First, we use an numerical example from Wingo (1983) based on the failure
times of certain electronic components and using type II censoring: 30 compo-
nents were involved in the life test which was censored after 20 failures. The
failure times (in month) are 0.1, 0.1, 0.2, 0.3, 0.4, 0.5, 0.5, 0.6, 0.7, 0.8, 0.9, 0.9,
1.2, 1.6, 1.8, 2.3, 2.5, 2.6, 2.9, 3.1.

For n = 30 and » = 20 and ¢t = 0.5, the MLE and Bayes estimators under
SEL, LINEX and SQAREX loss functions of the parameters ¢, k and R(t) are
computed and presented in Table 4.1 and Table 4.2.

In Table 4.1 and Table 4.2, the Bayes estimates of the parameters ¢ and k and
reliability function relative to LINEX and SQUAREX loss functions are sensitive
to the values of the a and d. In Table 4.1, if d is small in comparison with a
(for example, @ = 5 and d = 0.01), it is seen that the Bayes estimates éggx and
IAsSQ x and the approximation estimates é4pps and k APM are almost same values
and also the Bayes estimates relative to LINEX and SQUAREX loss functions

Table 4.1: MLE and Bayes estimates of the parameters ¢ and k for various a and
d

a d émre ¢ser Crix Csgx Capm
kvre  kser  krix  ksox  kapm
5 5 1.2912 1.3103 1.1681 1.2060 1.2087
0.6378 0.6728 0.6171 0.6326 0.6330

2 2 1.2478 1.2786 1.2791
0.6489 0.6608 0.6609

5 001 1.1681 1.1682 1.1682
0.6178 0.6171 0.6171

0.01 5 1.3099 1.3103 1.3103
0.6722 0.6728 0.6728

-5 5 1.5216 1.4670 1.4612

0.7469 0.7265 0.7258

Table 4.2: MLE and Bayes estimates of the reliability of R(t) for various a and d
a d R{#)mre R@)ser R@)cix R@)sox

5 5 0.8037 0.8020 0.7964 0.7980
1 5 0.8037 0.8022
01 5 0.8055 0.8020
-5 5 0.8136 0.8103

5 .01 0.7964 0.7964
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have almost the same. For small value a, the SQUAREX loss function is almost
symmetric and not far from a SEL.

In Table 4.2, if a goes to a negative value, then it tends to give more weight
to overestimation. Otherwise, it gives more weight to underestimation. For small
value d, the estimators R(t) rix and R(t) sox are almost same.

In order to compare MLE and Bayes estimators of the parameters k&, ¢ and
reliability function R(t) under LINEX and SQUAREX loss functions, Monte
Carlo simulation is performed. The following steps summarize the simulation:

(1) For a given value = 6,0 =3, vy =5 and 8 = 7, generate ¢ = 4.9195 and
k = 7.6922 (can be used as the true values) from the prior density functions
n (2.4) and (2.5).

(2) Using the results for k& and c from step (1), a sample size n is generated
from the Burr type XII distribution using the inverse CDF.

(3) The MLE R(t) uLg and Bayes estimators R(t) SEL R(t) rrx and RZt) SOX
under SEL, LINEX and SQUAREX loss functions of the reliability function
R(t) for some given value of ¢ = 0.7 are computed. The true value of R(t)
with ¢ = 4.9195 and k = 7.6922 is R(0.7) = 0.2931.

(4) Steps (1)—(3) are repeated 500 times.

(5) The average values and RMSE of the estimates are calculated over the 500
samples.

500
1

RMSE = 5002(& Ry)?

where Ry is true value of R and R is estimate of R.

Table 4.3 displays the MLE and the Bayes estimates relative to SEL, LINEX
and SQUAREX loss functions of the reliability function R(t) and its correspond-
ing RMSE for different sample and censoring size. The true value of R(t) with
¢ = 4.9195 and k = 7.6922 is R(0.7) = 0.2931. It is seen that the Bayes esti-
mates are better than the MLE and for LINEX loss function, the Bayes estimator
performed better than the others in the sense of comparing the RMSE of the es-
timates. As sample increases, the RMSE decreases which is the case in our
computer simulation.

Table 4.4 represents the MLE and Bayes estimates of the reliability R(t)
relative to symmetric and asymmetric loss functions (SEL, LINEX and SQAREX)
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Table 4.3: MLE and Bayes estimates of the reliability R(t) and RMSE for different
sample, n and censoring sizes, r(R(t)=0.2931, t=0.7, a =6,6 =3,y=5, =T,

a=land d=1)

n r  R{@)mLE R(t)seL R(t)rrix R(t)sgx

20 15 0.2786 0.3278 0.3270 0.3275
(0.009157)  (0.006886)  (0.006258) (0.006673)

20 0.2930 0.3253 0.3244 0.3250
(0.007254)  (0.006735)  (0.006215) (0.006560)

50 40 0.2902 0.3078 0.3090 0.3082
(0.003313)  (0.002655) (0.002484) (0.002596)

50 0.2953 0.3075 0.3081 0.3077
(0.002546) (0.0025019) 0.002376)  (0.002459)

100 80 0.2907 0.2987 0.3001 0.2992
' (0.001650)  (0.001406)  (0.001337) (0.001382)

100 0.2933 0.2991 0.2998 0.2994
(0.001386)  (0.001347)  (0.001300) (0.001331)

Table 4.4: MLE and Bayes estimates of the reliability R(¢) and RMSE for different
sample sizes n(R(t)=0.2931, t=0.7, a =6,0 =3, vy=5,8=17)

n a d Rt)mre R{t)ser R(t)L1x R(t)sox
50 0.01 2 0.2953 0.3075 0.3092 0.3075
(0.002546) (0.002502) (0.002427) (0.002502)
2 0.01 0.3069 0.3069
(0.002329)  (0.002330)
100 2 0.01 0.2933 0.2991 0.2991 0.2992
(0.001386) (0.001346) (0.001288) (0.001288)

for different values of @ and d. For small value of d, the Bayes estimates ]A%(t) LIX
and R(t)SQ x and its RMSE have almost same value. While, for small value
of a, the RMSE relative to asymmetric loss function are not far different from

those obtained with SEL. One would expect that as the sample size increases,
the RMSE decreases.
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