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Abstract 

 
This study proposes an analytical approximation algorithm based on extreme value theory 
(EVT) for the inverse of the power of the incomplete Gamma function. First, the Gumbel 
function is used to approximate the power of the incomplete Gamma function, and the 
corresponding inverse problem is transformed into the inversion of an exponential function. 
Then, using the tail equivalence theorem, the normalized coefficient of the general Weibull 
distribution function is employed to replace the normalized coefficient of the random variable 
following a Gamma distribution, and the approximate closed form solution is obtained. The 
effects of equation parameters on the algorithm performance are evaluated through simulation 
analysis under various conditions, and the performance of this algorithm is compared to those 
of the Newton iterative algorithm and other existing approximate analytical algorithms. The 
proposed algorithm exhibits good approximation performance under appropriate parameter 
settings. Finally, the performance of this method is evaluated by calculating the thresholds of 
space-time block coding and space-frequency block coding pattern recognition in 
multiple-input and multiple-output orthogonal frequency division multiplexing. The analytical 
approximation method can be applied to other related situations involving the maximum 
statistics of independent and identically distributed random variables following Gamma 
distributions. 
 
Keywords: incomplete Gamma function, extreme value theory, normalized coefficient, 
Gumbel function. 
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 1. Introduction  

In recent years, the inverse of the incomplete Gamma function has been increasingly utilized 
in wireless communication signal processing. The solution of certain problems such as the 
calculation of the secure outage probability of multiple-input and multiple-output (MIMO) 
multi-antenna selection systems [1], error probability analysis of M-ary orthogonal signals in 
fading channels [2], throughput analysis of maximum sum capacity channel sensing strategies 
in time-varying wireless channels [3], and MIMO signal pattern recognition [4-7] involves the 
inverse of the power of the incomplete Gamma function without exception.  

However, an exact analytical solution method is yet to be devised for the problem of the 
inverse of the power of the incomplete Gamma function; thus, a common means of addressing 
such problems is to transform them into incomplete Gamma function inverse problems. The 
existing algorithms can be divided into two categories: algorithms based on numerical 
evaluation [8-9] and algorithms related to the analytical expression [10-11]. Although the 
algorithms based on numerical evaluation have higher accuracy, they inevitably have common 
shortcomings. First, a good initial approximation of the root is needed for efficiency and 
convergence. Second, iteration involves computational complexity, which is not conducive to 
hardware implementation. Obviously, the analytic expression algorithm is more interpretable, 
besides, it is more suitable for practical engineering applications, such as the implementation 
of the algorithm in digital signal processor and field-programmable gate arrays (DSP/FPGAs). 
However, the existing inversion methods based on analytic expressions have some limitations 
on parameters. For example, in [11], the lower incomplete Gamma function was represented 
by the generalized hypergeometric function. This approach has enabled the inverse of the 
Gamma function to be obtained in closed form with low complexity. However, the continuous 
hypergeometric function can be expanded asymptotically only when the root is small. 

To overcome the aforementioned limitations, this article proposes an analytical 
approximation algorithm based on extreme value theory (EVT) for the inverse of the power of 
the incomplete Gamma function. The basic ideas are as follows: The Gumbel function was 
used to approximate the power of the incomplete Gamma function, and the normalized 
coefficient of the generalized Weibull distribution function was employed to replace the 
normalized coefficient of the random variable following a Gamma distribution, hence the 
approximate closed form solution was obtained. Through simulation under various conditions, 
the approximate analytical solution obtained using this algorithm was compared with the exact 
numerical solution based on the Newton iterative method, confirming the effectiveness of the 
algorithm and providing scope for other applications. In addition, the algorithm can also be 
applied to the inverse problem of the incomplete Gamma function after proper transformation. 
At the end of this study, two cases were discussed regarding the application of the algorithm 
for signal processing in communication. The algorithm was applied in a threshold setting of 
space-time block coding (STBC) and space-frequency block coding (SFBC) code pattern 
recognition algorithms in MIMO-orthogonal frequency division multiplexing (OFDM) 
systems. 
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2. Extreme Value Theory (EVT) 

2.1 Gamma Distribution and Its Equivalence Properties 
Theorem 1 (Fisher–Tippett Extremum Type Theorem)[12] 
Suppose 1 2 nX ,X ,...,X  is an independent and identically distributed random sequence, 
whose distribution function is ( )F x  and whose maximum is defined as

( ) 1 2max( )n nX X ,X ,...,X= . If constants { 0na > } and { nb } exist, let 

( )lim Pr ( ),n n

n
n

X b
x G x x R

a→∞

− 
≤ = ∈ 

 
,                                           (1) 

where ( )G x  is a nondegenerate distribution function. Then, its form must belong to one of the 
following three types of distributions: 
Type I distribution (Gumbel distribution) 

1( ) exp{ },xG x e x R−= − ∈ ;                                                  (2) 
Type II distribution (Frechet distribution) 

2

0, 0
( , )

exp{ }, 0, 0
x

G x
x xβ

β
β−

≤
= 

− > >
;                                          (3) 

Type III distribution (Weibull distribution) 

3
exp{ ( ) }, 0, 0

( , )
1, 0

x x
G x

x

β β
β

 − − ≤ >
= 

>
.                                      (4) 

These three functions are called extreme value distributions, and the parameter β  is related to 
the tail of the probability density function ( )F x . The Fisher–Tippett extreme type theorem 
shows that, for independent and identically distributed random variables, regardless of the 
type of probability density function, after proper normalization, the normalized extreme value 
random variable ( )n n

n

X b
a

−  converges to one of the aforementioned three extreme value 

distribution types. This characteristic indicates that knowing the parent distribution of random 
variable enables the limit distribution type of its extreme value to be inferred. The three 
extreme value limit distributions can be unified as follows: 

1/( ; , , ) exp (1 ) ,1 ( ) / 0,xG x x x Rξµµ δ ξ ξ ξ µ δ
δ

−− = − + + − > ∈ 
 

,                  (5) 

where , ,µ δ ξ represents position parameter, scale parameter, and shape parameter, 
respectively. 

Equation (5) is known as a generalized extreme value distribution. In practice, this 
distribution is often fitted by the block maxima (BM) method. For different parent 
distributions of the three types, the limit distribution of the extreme is decided by maximum 
domain attraction (MDA). Regarding the maximum value, the so-called attraction field states 
that 

( )( )lim Pr lim ( )n n n
n nn n

n

X b
x F a x b G x

a→∞ →∞

− 
≤ = + = 

 
.                           (6) 
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Then, the random variable X  belongs to the maximum domain of attraction of the extreme 
value distribution ( )G x , which can be expressed as ( )X MDA G∈ . 
Theorem 2 (Necessary and Sufficient Condition for the Maximum Domain of Attraction) 
[12] 

For a given parent distribution, the sufficient and necessary condition ensures that the 
maximum limit distribution belongs to one of the three kinds of attraction fields and can be 
expressed as follows: 

Belong to 1( )G x  if and only if 

1 1/ 1 1/( ) 1 1/lim {1 [ ( )]} exp( )n ne nn
n F X x X X x− − −→∞

− + − = − ,                            (7) 

where Xα  is the 100α quantile of the parent distribution. 

2.2 Tail Equivalence of Gumbel Distribution 
Theorem 3 (Tail Equivalence Property) [13] 
If the distribution functions ( )F x  and ( )G x  have the same right endpoint *x  , suppose that 
after normalization by constants { 0}na >  and { }nb , ( )F x  belongs to the maximum domain 
of attraction of the Gumbel function, which can be written as follows: 

1lim ( ) ( )n
n nn

F a x b G x
→∞

+ = .                                                  (8) 

Therefore, 1lim ( ) ( )n
n nn

G a x b G x+c
→∞

+ = , if and only if the tails of ( )F x  and ( )G x  are 

equivalent, which can be expressed as follows: 

*

1 ( )lim
1 ( )

c
x x

F x e
G x→

− =
−

,                                                          (9) 

where c  is a constant.  
According to this theorem, if 0c = , then lim[1 ( )] / [1 ( )] 1

x
F x G x

→∞
− − =  is established. Thus, 

the tails of ( )F x  and ( )G x  are considered to be equivalent, and the Gumbel approximation 
can be conducted with the same normalized coefficient. 

3. EVT Based Algorithm for the Inverse of the Power of the Incomplete 
Gamma Function 

3.1 Problem Description 
The equation involving the power of an incomplete Gamma function can be expressed as 
follows: 

( , ) 0 0,0 1nP x q x qα α= ≥ ≥ ≤ ≤, ,                                 (10) 

where ( , )( , )
( )

xP x γ αα
α

=
Γ

 represents the normalized lower incomplete Gamma function, α  is 

the shape parameter, ( , )xγ α is the lower incomplete Gamma function, and 

( )
+ 1

0
( )= 0tt e dtαα α

∞ − −Γ >∫  is the Gamma function [14]. Then, the inverse problem of the 

power of the incomplete Gamma function is to find x , given α  and q  in equation (10). 
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3.2 Analytical Approximation Algorithm for the Inverse of the Power of the 
Incomplete Gamma Function Based on EVT 

( , , )F x α β  is a Gamma distribution function with shape parameter α and scale parameter β . 
When =1β , ( , ,1)= ( , )F x P xα α . According to the order statistics theory, if 1 2, ,..., nX X X  
denote independent and identically distributed Gamma random vectors with shape parameter 
α  and scale parameter 1, then the distribution function of the maximum of the random 
sequence ( ) 1 2max( , ,... )n nX X X X=  obeys ( ; ,1) ( , )n nF x P xα α= . 

According to EVT, if 1 2, ,..., nX X X  are independent identical distributed Gamma random 
variables with shape parameter α  and scale parameter 1, then the limit distribution of the 
distribution function of the maximum of the random variables ( ) 1 2max( , )n nX X X X= L  
obeys a Gumbel distribution. i.e., if suitable normalization constants { 0}na > , { }nb  exist, then 
[15] 

1( )lim ( ; ,1) lim ( , )n n n
n n

n

x bF x P x G
a

α α
→∞ →∞

−= = ,                                   (11) 

where 1( ) exp[ exp( )]G x x= − −  is the Gumbel function, and the normalized coefficient is as 
follows [13]: 

1 1 ( )(1 1/ ), nn n nf bb F n a−= − = / ,                                          (12) 

where 
( ; ,1)( ) dF xf x
dx

α
=  is the probability distribution function of Gamma random 

variables. 
It is clear that the approximate solution becomes more accurate as n  increases. Based on 

empirical evidence, a better approximation will be obtained when n > 10 [15]. 
According to equation (11), equation (10) can be transformed as follows: 

exp exp ,0 1, 1n

n

x b
q q n

a
  −
− − ≈ ≤ ≤ >>  

   
.                                      (13) 

Therefore, the approximate solution of equation (13), which can be obtained by a simple 
derivation, can be written as follows: 

e ln( ln )vt
q n nx a q b≈ − − + .                                          (14) 

which is also the approximate solution of equation (10). 
From equation (12), it is necessary to compute the inverse of the incomplete Gamma 

function to obtain the normalization coefficient, but analytic solutions do not exist. Thus, 
equation (14) does not provide an analytic solution. Therefore, the analytic solution of the 
normalization coefficient will be considered first. 

Previous research has shown that the tail of the distribution of a random variable with a 
Gamma distribution is equivalent to that of a general Weibull distribution [14], i.e., the 
function of the general Weibull class distribution is as follows: 

 

0( ) 1 exp( ),G x Kx Cx x xλ τ= − − ≥ ,                                            (15) 
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where , , 0, 1K C λ τ> ≥ , and 0 0x ≥  are all real constants. When 1 1[ ( )]K αβ α− −= Γ , 

1= -1,C= , 1λ α τβ = , and 0 =0x , we can obtain 

1 ( ; , )lim 1
exp( )x

F x
Kx Cxλ

α β
→∞

−
=

− .                                                  (16) 

According to the tail equivalence property of the Gumbel distribution, ( )F x  and ( )G x  can 
be approximated by Gumbel distributions with the same normalization coefficient. Hence, the 
normalization coefficient of a generalized Weibull distribution function can be used to replace 
the normalization coefficient of a random variable following a Gamma distribution. The 
Lamber W function was used previously [14] to obtain the approximate analytic solution of 
the normalization coefficients of a generalized Weibull distribution as follows, 

{ }' 2 2

' ' ' ' 2 2

ln[ / ( )] ( 1) ln [( 1) ln ( 1) ln( 1) 1] /

[ ( 1)] / [( ) ( 1)( 2)]

n n n n

n n n n

b n B B B

a b b b

β α α α α α α

β β α β α α

= Γ + − + − − − − + −

= + − − − −





.         (17) 

where ln[ / ( )] ( 1) ln( 1)nB n α α α= Γ + − − . 
Letting 1β = , the normalization coefficients defined in equation (17) can be used to 

represent equation (12) and then can be substituted into equation (14) to obtain the 
approximate analytic solution as: 

e ' 'ln( ln )vt
q n nx a q b≈ − − + .                                             (18) 

The calculation times of each parameter in this algorithm is analyzed in Table 1. The 
calculation of the parameters involves 4 types of operations, consisting of 18 
addition/subtraction operations, 19 multiplication/ division operations, 8 logarithmic 
calculations, and 2 special functions. As the search and iteration operations are not involved in 
the calculation process of (18), the complexity order of the proposed algorithm is O (1) 
approximately. 

 
 

Table 1. Analysis of algorithm complexity 
                number of times 

Parameters 
Addition/ 

Subtraction 
Multiplication/ 

Division 
Logarithm 
Calculation  

Special 
Function 

nB  3 2 2 1 
'
nb  9 8 4 1 
'
na  5 8 0 0 

evt
qx  1 1 2 0 

total 18 19 8 2 
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In summary, the approximation algorithm in this paper can be expressed as follows: 
 

Analytical Approximation Algorithm for the Inverse of the Power of the Incomplete 
Gamma Function Based on EVT 

Input: The parameters in equation ( , )nP x qα = , such as , ,qα and n  
Output: The solution x  of equation ( , )nP x qα = . 
1. Conditional testing: Check whether the parameters in equation (10) fit the scope of 
applications of this algorithm, that is, 0,0 1,qα ≥ < < and 1n >> . 

2. Solution of normalized coefficient: Compute the normalized coefficients '
na  and '

nb  
in terms of the parameters α and n  in equation (17). 
3. Approximate solution computation: Substitute the normalized coefficients '

na  and 
'
nb  into equation (18) and obtain the approximate solution of equation (10). 

4. Simulation and Analysis 
To evaluate the algorithm, its performance was simulated and analyzed under different 
parameter settings, as described in this section, and it has been compared to the existing 
approximate analytical algorithms proposed in [10], [16] and the Newton iteration method [9]. 

4.1 Algorithm Performance Analysis 
This section discusses the effects of parameters , ,q α and n in equation (10) on the simulation 
results, for performance evaluation of the proposed algorithm. 

If we denote the exact numerical solution obtained by the Newton iteration method as ext
qx

and denote the approximate analytical solution obtained by the proposed algorithm as evt
qx  , 

the relative error can be defined by, 
e e e| |vt xt xt
q q qerr x x x= −　 / ,                                                  (19) 

which acts as a performance evaluation measure. 
(1) Influence of q  on the performance of the proposed algorithm  

In the equation ( , )nP x qα = , let n = 1000, ={4,6,8,10}α ,  and 0.1 ~ 0.9q = with the 
step size 0.1. Fig. 1 shows the variation of the relative error, err , of the proposed algorithm 
with respect to the parameter q . 
As shown in Fig. 1, when n  is fixed, the relative error, err , between the approximate 
analytical solution and the exact numerical solution decreases with increasing q . err  is less 
than 6% under different α  when 0.9q = , while the maximum err is 8.4% when 0.1q = . 
The results show that the greater the q , the better the performance of the proposed algorithm. 
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Fig. 1. Influence of q  on the performance of the proposed algorithm 

 
(2) Influence of α  on the performance of the proposed algorithm 

In equation (10), when n =1000 and {0.9,0.99,0.999}q = , α  varies from 4 to 40 with 
the step size 2. Fig. 2 presents the relationship between err and the parameter α . 

In the simulation, err  increases with the increase of the parameter α  when n  is a 
constant. According to [14] (Theorem 5.1 (3)), for different types of Weibull random variables, 
when the maximum limit distribution converges to a Gumbel distribution, the normalization 
constants na  and nb  are: 

1 2 1 2

1 1
n

n n n

a O
C b b bτ τ τ

δ
τ − −

 
= + +  

 
.                                                   (20) 

then, 
2 2

1 1

1 1( ) ( ){1 [2( ) ( 1) )]n
n n

n n

G a x b G x C x x O O
b bτ τλ τδ τ +

   
+ = + − − − +   

   
,           (21) 

where 0δ ≥ . As can be seen from equation (21), λ also has some influence on the 
convergence rate from ( )n

n nG a x b+  to 1( )G x . Considering the distribution function of 
random variables with Gamma distributions ( ; , )F x α β , we can obtain 1, 1/ , 1Cλ α β τ= − = = ; 
therefore, the second term in equation (21) becomes 

2 1[2( 1 ) ]
n

x O
b

α β δ−  
− −  

 
.                                                      (22) 

Obviously, when β  is invariant, the convergence rate decreases as α  increases. In other 
words, if the thresholds of err  is established, the larger α  is, the greater is the n  required. 
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Fig. 2. Influence of  α  on the performance of the proposed algorithm  

 
(3) Influence of n  on the performance of the proposed algorithm 

Fig. 3 shows the performance of the proposed algorithm under different n , where q = 0.9，
{4,6,8,10,12}α =  and {50,100,500,1000,2000}n = .  

Clearly, err decreases with increasing n  because the normalized coefficient calculated 
using equation (12) is close to the approximate solution obtained using equation (17) with 
increasing n . This phenomenon is consistent with the limit properties of the coefficients 
under the condition of tail equivalence of different parent distribution functions in EVT, which 
can be represented as 'lim / 1n nn

a a
→∞

=  and ' 'lim( ) / 0n n nn
b b a

→∞
− = [13].  
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Fig. 3. Influence of n  on the performance of the proposed algorithm 
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4.2 Performance Comparison with Existing Algorithms 
Here, we describe the performance comparison of the proposed method with those of the 
methods in [10], [16], and the Newton iteration method [9]. The simulation platform was Dell 
(model: 131WL), and the processor was Intel (R) core (TM) i5-8265u (1.8 GHz). In the 
simulation, the parameters in the equation ( , )nP x qα =  were set as follows: n =1000, α =3, 
and ={0.5,0.6,0.7,0.8,0.9}q . Fig. 4 presents the solutions of these algorithms. 

It can be observed that with moderate values of n  and α , the solutions obtained using the 
proposed algorithm fit the exact values obtained using the Newton iterative method more 
closely than those determined using the algorithms in [10] and [16]. In addition, the proposed 
algorithm and the algorithm in [16] are greatly affected by q . The results of the two 
algorithms become closer to the exact values as q  increases.  
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Fig. 4. Solutions of the equation versus q under moderate α  and n  

 
Table 2 shows the performance and operation time of the proposed algorithm in 

comparison with those in [9],[10], and [16] under the same conditions.  The parameters in 
equation (10) were set as follows: n =1000, α =3, =0.9q , and 100 simulation experiments 
were conducted. 

Obviously, the operation time of the proposed algorithm is slightly longer than those of the 
algorithms in [10] and [16] owing to the calculation of two normalization coefficients; 
however, the operation times of these three methods are less than that of the Newton iteration 
method. From the viewpoint of estimation performance, the relative error between the 
analytical solution obtained by this algorithm and the exact solution obtained using the 
Newton iteration method is only 0.24%, which is less than those of the algorithms in [10] and 
[16]. 
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Table 2. Performance and operation time comparisons between the proposed algorithm and the existing 
algorithms 

Algorithm  Relative error (average) Operation time (average) 

Proposed algorithm 0.24% 0.18 μs 

Algorithm in [10] 1.43% 0. 08 μs 

Algorithm in [16] 0.52% 0.15 μs 

Newton iterative method [9] ―― 62.5 μs 

5. Application Examples 
The approximate algorithm for the inverse of the power of the incomplete Gamma function 
studied herein is based on the extremum theory. Under certain conditions, the power of the 
incomplete Gamma function is approximated by a Gumbel function, simplifying the inverse 
operation and producing an approximate closed solution. In the calculation process, the 
aforementioned problem is transformed to determine the normalized coefficients of Weibull 
distribution functions, and an approximate analytical expression is obtained. Therefore, the 
approximate calculation method proposed in this paper can be applied to all relevant situations 
involving the maximum statistic of independent and identically distributed random variables 
with Gamma distributions. This section illustrates the threshold calculation in MIMO-OFDM 
signal pattern recognition in detail. 

5.1 Threshold Calculation for STBC Pattern Recognition in MIMO-OFDM 
Systems 
In the research on space-time block code recognition for MIMO-OFDM [5], the maximum 
delay autocorrelation function of different receiving antenna signals is considered for the 
recognition statistics and compared to a specific threshold to realize the recognition of spatial 
modulation (SM) and STBC codes. The decision statistic for code type recognition is defined 
as 

max ( )c= E τϒ ,                                                          (23) 

where 
2 1

0 1

( ) ( )
r rN N

ij
i j i

c = EE τ τ
− −

= = +
∑ ∑ . ( )ijE τ  denotes the delay cross-correlation function between 

the i-th and j-th receiving antennas, and rN  represents the number of receiving antennas. As 

stated in [5], when SM code is selected, ( )cE τ approximately obeys 2 (2 )cNχ with the 
parameter ( 1) / 2c r rN N N= − , which is essentially a special case of the Gamma distribution. 
Thus, the recognition algorithm can be concluded as: According to the constant false alarm 
rate (CFAR) criterion, for a given false alarm probability faP and the corresponding decision 
threshold λ , if λϒ ≥ , the code type of the received signal is determined to be STBC, 
otherwise it is SM.  
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The decision threshold can be obtained by solving the following equation [4]: 
 

( , / 2)
(1 ) = ( , / 2)

( )

N v
N vc

fa c
c

N
P P N

N
γ λ

λ
+

+ 
− =  Γ 

,                              (24) 

 
where ν is the cyclic prefix length of the OFDM signal, which is generally a quarter of the 
signal length. Obviously, it is difficult to obtain an analytical solution for equation (24); 
however, it can be solved by numerical methods such as Newton iteration. A numerical 
solution is more accurate; however, such solutions are computationally more complex, and 
they are not conducive to the engineering implementation of hardware platforms. Hence, in 
this study, we attempted to find an approximate analytical solution of equation (24) based on 
the proposed approximation method. 

First, the applicability of the application case was evaluated. The numerical calculation and 
performance analysis results presented in the preceding section indicate that the approximate 
solution proposed in this paper has better performance when n  is large and q  approaches 1. 
Considering that n  is generally large, when faP  is relatively small, 1 faP−  approaches 1, 
which meets the application conditions of the proposed approximation algorithm. 

Thus, the solution of equation (24) can be approximated using the following equation: 
 

( )/1 Pr( ) 1 exp( )n n
fa

b aP e λλ − −− ϒ < ≈ − −= .                                  (25) 
 

By letting , 2cNα β= = , n N ν= +  and substituting these parameters into equation (17), 
the normalized coefficients in the equation (25) can be obtained as: 

 
2{ ln[ ln(1 )]}N v N v fab a Pλ + +≈ − − − .                                     (26) 

 
Fig. 5 presents a comparison between the thresholds obtained using various methods and 

the exact values obtained using the Newton iterative method under different numbers of 
receiving antennas. In the simulation, the false alarm probability was set to 0.001. The number 
of samples was 1024. The black square-symbol line in the figure is the exact threshold value 
obtained using the Newton iterative method, and the other lines are the approximate solutions 
obtained by the algorithms in [10], [16] and the proposed algorithm. It can be seen that the 
approximate analytical threshold obtained using the proposed algorithm is close to the exact 
solution. In addition, the approximate performance depends on the number of receiving 
antennas. As the number of receiving antennas decreases, all approximate solutions become 
closer to the exact solutions because the number of antennas corresponds to the shape 
parameters of the Gamma distribution. According to the algorithm performance analysis 
presented in Section 4, the approximation performance is better when the shape parameters are 
small. In 4G communication systems, the number of receiving antennas generally vary from 2 
to 8. 
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Fig. 5. Thresholds versus the number of receiving antennas for a MIMO-OFDM STBC recognition 

system at the false alarm probability of 0.1% 

5.2 Threshold Calculation for SFBC Pattern Recognition in MIMO-OFDM 
Systems 
In [17], an algorithm based on the central limit theorem was proposed for the recognition of 
SM and Alamouti (AL)-SFBC signals in MIMO-OFDM systems. The test statistic constructed 
in the algorithm is, 

1
1

0

ˆ
L

T
i i

i
u v vψ

−
−

=

= ∑ ,                                                        (27) 

where 
'

'

( 1) 2

'
12

1 (2 1,2 )

2

Ni

i
iNj

v r j j
N

+

= +

= −∑  and 
2

2
1

1ˆ = [ ( , 2) ( , 2)]
3

N

D
k

I r k k r k k
N

ψ
−

=

⋅ + +
− ∑ o can be 

obtained by the cross-correlation function between the 1k th−  OFDM subcarrier at the i-th 
receiving antenna and the 2k th−  OFDM subcarrier at the j-th receiving antenna. L is the 
number of vectors in the group. If the number of receiving antennas is rN , the set of receiving 
antennas pairs ( 1)r rD N N= − . 

As described in [17], the recognition of SM and AL-SFBC signals can be converted into 
the following problem. Suppose the false alarm probability is faP , and  the decision threshold 
is η .  If u η≥ , the received signal is AL, otherwise it is SM.  

Here, the CFAR criterion is used to determine a decision thresholdη : 
Pr( )faP u η= ≥ .                                                       (28) 

 Then, using the cumulative distribution function (CDF) expression of the chi-square 
distribution, we can calculate that 

( / 2, / 2)1 Pr( )
( / 2)fa

pP u
p

γ ηη− = < =
Γ

.                                           (29) 
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In equation (29), ( / 2, / 2)
( / 2)

p
p

γ η
Γ

 represents the normalized lower incomplete Gamma 

function. Let / 2p α= , /2=xη , and 1 faQ P= − ; then, if the false alarm probability faP  is 
provided, the equation can be rewritten as 

( , ) 1
( ) fa

x P Qγ α
α

= − =
Γ

.                                                (30) 

Obviously, the solution of the decision threshold η  is the inverse of the incomplete 
Gamma function. If n th−  power is taken on both sides of equation (30), this equation can be 
transformed into equation (10). Inserting q = Qn into the equation yields 

' '=2 [-a ln(-ln( )+b ]n
N NQη × .                                         (31) 

According to this analysis, in the process of solving the decision threshold, calculating 
n th−  power at both sides of equation (30) is necessary. However, there are two restrictions 
on the value of n . On one hand, in the equation ( , )n nP x Q qα = = , the relative error, err , 
between the approximate analytical solution and numerical exact solution decreases with 
increasing n , while on the other, q  decreases with increasing n . Fig. 6 compares the 
numerical solution of threshold η  and the approximate analytical solution obtained using the 
proposed algorithm with different n . It can be seen that when n  is small, the error between 
the approximate solution and the numerical solution decreases with increasing n . When n = 
40, the approximate solution is close to the numerical solution. When n  is large, the error 
between the approximate solution and numerical solution increases with increasing n . 
Therefore, for practical applications, n  is generally set to 40. 
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Focusing on the recognition threshold problem for SM and AL-SFBC signals in [17], Fig. 
7 presents a performance comparison between the numerically obtained threshold and the 
approximate analytical solutions obtained using the proposed algorithm and those in [10] and 
[16]. According to the aforementioned analysis, n = 40 and faP = 0.001 should be used to 
improve the estimation performance of this algorithm. With appropriate parameters, the 
estimation performances of the proposed algorithm and that in [10] are close to the numerical 
solution. In addition, when the number of receiving antennas is small, the approximate 
solution is closer to the numerical solution, but the estimation error increases as the number of 
antennas increases. 
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Fig. 7. Thresholds versus the number of receiving antennas for a MIMO-OFDM SFBC recognition 

system at the false alarm probability of 0.1%. 

6. Conclusion 
In this study, an approximate analytical algorithm for the inverse of the power of the 
incomplete Gamma function based on EVT was investigated, which has certain theoretical and 
practical values. First, the power of the incomplete Gamma function was associated with the 
maximum limit distribution of independent and identically distributed random quantities 
following Gamma distributions. Then, based on EVT, the Gumbel function was used to 
approximate the power of the incomplete Gamma function, and the normalized coefficient of 
the Weibull distribution function was employed to replace the normalized coefficient of the 
random variable following a Gamma distribution. Finally, the approximate closed form 
solution was obtained. The simulation results show that when the parameters ,q α  and n  are 
appropriate, the proposed algorithm has better accuracy than those of the existing algorithms. 
This study also investigated the applications of the proposed algorithm in calculating the 
thresholds of STBC and SFBC code recognition in MIMO-OFDM. 
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