• Title/Summary/Keyword: approximate functional equation

Search Result 44, Processing Time 0.039 seconds

APPROXIMATE PEXIDERIZED EXPONENTIAL TYPE FUNCTIONS

  • Lee, Young-Whan
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.193-198
    • /
    • 2012
  • We show that every unbounded approximate Pexiderized exponential type function has the exponential type. That is, we obtain the superstability of the Pexiderized exponential type functional equation $$f(x+y)=e(x,y)g(x)h(y)$$. From this result, we have the superstability of the exponential functional equation $$f(x+y)=f(x)f(y)$$.

COSINE FUNCTIONAL EQUATION IN SEVERAL VARIABLES

  • CHUNG, JAEYOUNG;KO, SEUNGJUN;SONG, SUNGHYUN
    • Honam Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • Making use of a transparent way of convolution by tensor product of approximate identities we consider the cosine functional equation in several variables.

  • PDF

PARTITIONED FUNCTIONAL EQUATIONS AND APPROXIMATE ALGEBRA HOMOMORPHISMS

  • Chung, Bo-Hyun;Bae, Jae-Hyeong;Park, Won-Gil
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.467-474
    • /
    • 2004
  • We prove the generalized Hyers-Ulam-Rassias stability of a partitioned functional equation. It is applied to show the stability of algebra homomorphisms between Banach algebras associated with partitioned functional equations in Banach algebras.

APPROXIMATE ADDITIVE MAPPINGS IN 2-BANACH SPACES AND RELATED TOPICS: REVISITED

  • YUN, SUNGSIK
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.393-399
    • /
    • 2015
  • W. Park [J. Math. Anal. Appl. 376 (2011) 193-202] proved the Hyers-Ulam stability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces. But there are serious problems in the control functions given in all theorems of the paper. In this paper, we correct the statements of these results and prove the corrected theorems. Moreover, we prove the superstability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces under the original given conditions.

APPROXIMATE GENERALIZED EXPONENTIAL FUNCTIONS

  • Lee, Eun-Hwi
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.451-462
    • /
    • 2009
  • In this paper we prove the superstability of a generalized exponential functional equation $f(x+y)=a^{2xy-1}g(x)f(y)$. It is a generalization of the superstability theorem for the exponential functional equation proved by Baker. Also we investigate the stability of this functional equation in the following form : ${\frac{1}{1+{\delta}}}{\leq}{\frac{f(x+y)}{a^{2xy-1}g(x)f(y)}}{\leq}1+{\delta}$.

CONTROL PROBLEMS FOR NONLINEAR RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Kim, Han-Geul
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.445-453
    • /
    • 2007
  • This paper deals with the approximate controllability for the nonlinear functional differential equations with time delay and studies a variation of constant formula for solutions of the given equations.

HYERS-ULAM-RASSIAS STABILITY OF ISOMORPHISMS IN C*-ALGEBRAS

  • Park, Choonkil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.159-175
    • /
    • 2006
  • This paper is a survey on the Hyers-Ulam-Rassias stability of the Jensen functional equation in $C^*$-algebras. The concept of Hyers-Ulam-Rassias stability originated from the Th.M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. Its content is divided into the following sections: 1. Introduction and preliminaries. 2. Approximate isomorphisms in $C^*$-algebras. 3. Approximate isomorphisms in Lie $C^*$-algebras. 4. Approximate isomorphisms in $JC^*$-algebras. 5. Stability of derivations on a $C^*$-algebra. 6. Stability of derivations on a Lie $C^*$-algebra. 7. Stability of derivations on a $JC^*$-algebra.

  • PDF

FUNCTIONAL EQUATIONS IN BANACH MODULES AND APPROXIMATE ALGEBRA HOMOMORPHISMS IN BANACH ALGEBRAS

  • Boo, Deok-Hoon;Kenary, Hassan Azadi;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.33-52
    • /
    • 2011
  • We prove the Hyers-Ulam stability of partitioned functional equations in Banach modules over a unital $C^*$-algebra. It is applied to show the stability of algebra homomorphisms in Banach algebras associated with partitioned functional equations in Banach algebras.

GENERALIZED JENSEN'S FUNCTIONAL EQUATIONS AND APPROXIMATE ALGEBRA HOMOMORPHISMS

  • Bae, Jae-Hyeong;Park, Won-Gil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.401-410
    • /
    • 2002
  • We prove the generalized Hyers-Ulam-Rassias stability of generalized Jensen's functional equations in Banach modules over a unital $C^{*}$-algebra. It is applied to show the stability of algebra homomorphisms between Banach algebras associated with generalized Jensen's functional equations in Banach algebras.

APPROXIMATE CONTROLLABILITY FOR NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Rho, Hyun-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.173-181
    • /
    • 2012
  • In this paper, we study the control problems governed by the semilinear parabolic type equation in Hilbert spaces. Under the Lipschitz continuity condition of the nonlinear term, we can obtain the sufficient conditions for the approximate controllability of nonlinear functional equations with nonlinear monotone hemicontinuous and coercive operator. The existence, uniqueness and a variation of solutions of the system are also given.