FUNCTIONAL EQUATIONS IN BANACH MODULES AND APPROXIMATE ALGEBRA HOMOMORPHISMS IN BANACH ALGEBRAS

DEOK-HOON BOO, HASSAN AZADI KENARY AND CHOONKIL PARK*

ABSTRACT. We prove the Hyers-Ulam stability of partitioned functional equations in Banach modules over a unital C^* -algebra. It is applied to show the stability of algebra homomorphisms in Banach algebras associated with partitioned functional equations in Banach algebras.

1. Introduction and preliminaries

Recently, T. Trif [9, Theorem 2.1] proved that, for vector spaces V and W, a mapping $f: V \to W$ with f(0) = 0 satisfies the functional equation

$$n_{n-2}C_{k-2}f(\frac{x_1 + \dots + x_n}{n}) + \sum_{n-2}C_{k-1}\sum_{i=1}^n f(x_i)$$

$$= k \sum_{1 \le i_1 < \dots < i_k \le n} f(\frac{x_{i_1} + \dots + x_{i_k}}{k})$$

for all $x_1, \dots, x_n \in V$ if and only if the mapping $f: V \to W$ satisfies the additive Cauchy equation f(x+y) = f(x) + f(y) for all $x, y \in V$.

In [6], Park conjectured the following, and gave a partial answer for the conjecture.

Received February 14, 2011. Revised March 13, 2011. Accepted March 15, 2011. 2000 Mathematics Subject Classification: 39B52, 47B48, 46L05.

Key words and phrases: unitary group, partitioned functional equation, approximate algebra homomorphism, Banach module over C^* -algebra, stability.

^{*}Corresponding author.

Conjecture. A mapping $f: V \to W$ with f(0) = 0 satisfies the functional equation

$$p^{n} f(\frac{x_{1} + \dots + x_{p^{n}}}{p^{n}}) + (pk - p) \sum_{i=1}^{p^{n-1}} f(\frac{x_{pi-p+1} + \dots + x_{pi}}{p})$$

$$= k \sum_{i=1}^{p^{n}} f(\frac{x_{i} + \dots + x_{i+k-1}}{k})$$
(1.1)

for all $x_1 = x_{p^n+1}, \dots, x_{k-1} = x_{p^n+k-1}, x_k, \dots, x_{p^n} \in V$ if and only if the mapping $f: V \to W$ satisfies the additive Cauchy equation f(x+y) = f(x) + f(y) for all $x, y \in V$.

Throughout this paper, let A be a unital C^* -algebra with norm $|\cdot|$ and U(A) the unitary group of A. Let ${}_AB$ and ${}_AC$ be left Banach A-modules with norms $||\cdot||$ and $||\cdot||$, respectively. Let d, r and p be positive integers.

The following is useful to prove the stability of linear functional equations in Banach modules over a unital C^* -algebra.

LEMMA 1.1. ([5, Theorem 1]) Let $a \in A$ and $|a| < 1 - \frac{2}{m}$ for some integer m greater than 2. Then there are m elements $u_1, \dots, u_m \in U(A)$ such that $ma = u_1 + \dots + u_m$.

The main purpose of this paper is to prove the Hyers-Ulam stability of the functional equation (1.1) in Banach modules over a unital C^* -algebra for a special case, and to prove the Hyers-Ulam stability of algebra homomorphisms in Banach algebras.

2. Partitioned functional equations

In this section, we solve the conjecture for a special case.

THEOREM 2.1. Let V and W be vector spaces. A mapping $f: V \to W$ with f(0) = 0 satisfies the functional equation

$$(4p)^{n} f(\frac{x_{1} + \dots + x_{(4p)^{n}}}{(4p)^{n}}) + 4p \sum_{i=1}^{(4p)^{n-1}} f(\frac{x_{4pi-4p+1} + \dots + x_{4pi}}{4p})$$

$$= 2 \sum_{i=1}^{(4p)^{n}} f(\frac{x_{i} + x_{i+1}}{2})$$

for all $x_1 = x_{(4p)^n+1}, x_2, \dots, x_{(4p)^n} \in V$ if and only if the mapping $f: V \to W$ satisfies the additive Cauchy equation f(x+y) = f(x) + f(y) for all $x, y \in V$.

Proof. Assume that a mapping $f: V \to W$ satisfies (2.1). Put $x_{4i-3} = x$, $x_{4i-2} = y$, $x_{4i-1} = z$ and $x_{4i} = -z$ in (2.1) for all $i = 1, \dots, p(4p)^{n-1}$. Then

$$(4p)^{n} f(\frac{x+y}{4}) + (4p)^{n} f(\frac{x+y}{4})$$

$$= 2(4p)^{n-1} \left(pf(\frac{x+y}{2}) + pf(\frac{y+z}{2}) + pf(\frac{-z+x}{2})\right)$$

for all $x, y, z \in V$. Put x = y and z = x in (2.2). Then we get

$$2 (4p)^n f(\frac{x}{2}) = 4p (4p)^{n-1} f(x)$$

for all $x \in V$. So we have

(2.3)
$$f(\frac{1}{2}x) = \frac{1}{2}f(x)$$

for all $x \in V$. Put z = 0 in (2.2). By (2.3), we get

$$2p (4p)^{n-1} f(x+y) = (4p)^{n-1} (pf(x+y) + pf(y) + pf(x))$$

for all $x, y \in V$. So the mapping $f: V \to W$ satisfies the additive Cauchy equation f(x+y) = f(x) + f(y) for all $x, y \in V$.

The converse is obvious.
$$\Box$$

THEOREM 2.2. Let V and W be vector spaces. A mapping $f: V \to W$ with f(0) = 0 satisfies the functional equation

$$(4p)^{n} f(\frac{x_{1} + \dots + x_{(4p)^{n}}}{(4p)^{n}}) + 8p \sum_{i=1}^{(4p)^{n-1}} f(\frac{x_{4pi-4p+1} + \dots + x_{4pi}}{4p})$$

$$= 3 \sum_{i=1}^{(4p)^{n}} f(\frac{x_{i} + x_{i+1} + x_{i+2}}{3})$$

for all $x_1 = x_{(4p)^n+1}, x_2 = x_{(4p)^n+2}, x_3, \dots, x_{(4p)^n} \in V$ if and only if the mapping $f: V \to W$ satisfies the additive Cauchy equation f(x+y) = f(x) + f(y) for all $x, y \in V$.

Proof. Assume that a mapping $f: V \to W$ satisfies (2.4). Put $x_{4i-3} = x_{4i-1} = x$ and $x_{4i-2} = x_{4i} = y$ in (2.4) for all $i = 1, \dots, p(4p)^{n-1}$. Then

$$(2.5) \quad (4p)^n f(\frac{x+y}{2}) + 2 (4p)^n f(\frac{x+y}{2})$$

$$= 6p (4p)^{n-1} (f(\frac{2x+y}{3}) + f(\frac{x+2y}{3}))$$

for all $x, y \in V$. Replacing x and y by 2x and -x in (2.5), respectively, we get

$$3 (4p)^n f(\frac{x}{2}) = 6p (4p)^{n-1} f(x)$$

for all $x \in V$. So

(2.6)
$$f(\frac{1}{2}x) = \frac{1}{2}f(x)$$

for all $x \in V$. Put $x_{4i-3} = x$, $x_{4i-2} = y$, $x_{4i-1} = z$ and $x_{4i} = -z$ in (2.4) for all $i = 1, \dots, p(4p)^{n-1}$. Then

$$(4p)^{n} f(\frac{x+y}{4}) + 2 (4p)^{n} f(\frac{x+y}{4}) = 3(4p)^{n-1} \left(pf(\frac{x+y+z}{3}) + pf(\frac{y}{3})\right) + pf(\frac{x}{3}) + pf(\frac{x}{3}) + pf(\frac{x+y-z}{3})\right)$$

for all $x, y, z \in V$. Put x = y and z = x in (2.7). Then we get

$$3 (4p)^n f(\frac{x}{2}) = 3p (4p)^{n-1} (f(x) + 3f(\frac{x}{3}))$$

for all $x \in V$. By (2.6), we get

$$6p (4p)^{n-1} f(x) = 3p (4p)^{n-1} (f(x) + 3f(\frac{x}{3}))$$

for all $x \in V$. So we have

(2.8)
$$f(\frac{1}{3}x) = \frac{1}{3}f(x)$$

for all $x \in V$. Put z = 0 in (2.7). By (2.6) and (2.8), we get

$$3p (4p)^{n-1} f(x+y) = (4p)^{n-1} (pf(x+y) + pf(y) + pf(x) + pf(x+y))$$

for all $x, y \in V$. So the mapping $f: V \to W$ satisfies the additive Cauchy equation f(x+y) = f(x) + f(y) for all $x, y \in V$.

The converse is obvious. \Box

3. Stability of partitioned functional equations in Banach modules over a C^* -algebra associated with its unitary group

We prove the Hyers-Ulam stability of the functional equation (1.1) in Banach modules over a unital C^* -algebra associated with its unitary group for a special case.

THEOREM 3.1. Let $f: {}_{A}B \to {}_{A}C$ be a mapping with f(0) = 0 for which there exists a function $\varphi: {}_{A}B^{(4p)^n} \to [0, \infty)$ such that

(3.1)
$$\widetilde{\varphi}(x_1, \dots, x_{(4p)^n}) :$$

$$= \sum_{j=0}^{\infty} \left(\frac{d}{(4p)^n r}\right)^j \varphi\left(\left(\frac{(4p)^n r}{d}\right)^j x_1, \dots, \left(\frac{(4p)^n r}{d}\right)^j x_{(4p)^n}\right) < \infty,$$

$$||D_{u}f(x_{1}, \dots, x_{(4p)^{n}})|| = ||\frac{d}{r}uf(\frac{rx_{1} + \dots + rx_{(4p)^{n}}}{d})|$$

$$+ 4p \sum_{i=1}^{(4p)^{n-1}} uf(\frac{x_{4pi-4p+1} + \dots + x_{4pi}}{4p})$$

$$- 2 \sum_{i=1}^{(4p)^{n}} f(\frac{ux_{i} + ux_{i+1}}{2})|| \leq \varphi(x_{1}, \dots, x_{(4p)^{n}})$$

for all $u \in U(A)$ and all $x_1 = x_{(4p)^n+1}, x_2, \cdots, x_{(4p)^n} \in {}_AB$. Then there exists a unique A-linear mapping $T: {}_AB \to {}_AC$ such that

(3.3)
$$||f(x) - T(x)|| \le \frac{1}{(4p)^n} \widetilde{\varphi}(x, \dots, x)$$

for all $x \in {}_{A}B$.

Proof. Put $u = 1 \in U(A)$. Let $x_1 = \cdots = x_{(4p)^n} = x$ in (3.2). Then we get

$$\left\| \frac{d}{r} f(\frac{(4p)^n r}{d} x) + (4p)^n f(x) - 2(4p)^n f(x) \right\| \le \varphi(x, \dots, x)$$

for all $x \in {}_{A}B$. So one can obtain that

$$||f(x) - \frac{d}{(4p)^n r} f(\frac{(4p)^n r}{d} x)|| \le \frac{1}{(4p)^n} \varphi(x, \dots, x)$$

for all $x \in {}_{A}B$. We prove by induction on j that

$$\|(\frac{d}{(4p)^n r})^j f((\frac{(4p)^n r}{d})^j x) - (\frac{d}{(4p)^n r})^{j+1} f((\frac{(4p)^n r}{d})^{j+1} x)\|$$

$$\leq \frac{1}{(4p)^n} (\frac{d}{(4p)^n r})^j \varphi((\frac{(4p)^n r}{d})^j x, \cdots, (\frac{(4p)^n r}{d})^j x)$$

for all $x \in {}_{A}B$. So we get

$$(3.4) \|f(x) - (\frac{d}{(4p)^n r})^j f((\frac{(4p)^n r}{d})^j x)\|$$

$$\leq \frac{1}{(4p)^n} \sum_{m=0}^{j-1} (\frac{d}{(4p)^n r})^m \varphi((\frac{(4p)^n r}{d})^m x, \cdots, (\frac{(4p)^n r}{d})^m x)$$

for all $x \in {}_{A}B$.

Let x be an element in ${}_{A}B$. For positive integers l and m with l > m,

$$\|(\frac{d}{(4p)^n r})^l f((\frac{(4p)^n r}{d})^l x) - (\frac{d}{(4p)^n r})^m f((\frac{(4p)^n r}{d})^m x)\|$$

$$\leq \frac{1}{(4p)^n} \sum_{i=m}^{l-1} (\frac{d}{(4p)^n r})^j \varphi((\frac{(4p)^n r}{d})^j x, \cdots, (\frac{(4p)^n r}{d})^j x),$$

which tends to zero as $m \to \infty$ by (3.1). So $\{(\frac{d}{(4p)^n r})^j f((\frac{(4p)^n r}{d})^j x)\}$ is a Cauchy sequence for all $x \in {}_AB$. Since ${}_AC$ is complete, the sequence $\{(\frac{d}{(4p)^n r})^j f((\frac{(4p)^n r}{d})^j x)\}$ converges for all $x \in {}_AB$. We can define a mapping $T: {}_AB \to {}_AC$ by

(3.5)
$$T(x) = \lim_{j \to \infty} \left(\frac{d}{(4p)^n r}\right)^j f\left(\left(\frac{(4p)^n r}{d}\right)^j x\right)$$

for all $x \in {}_{A}B$.

By (3.1) and (3.5), we get

$$||D_{1}T(x_{1}, \cdots, x_{(4p)^{n}})||$$

$$= \lim_{j \to \infty} \left(\frac{d}{(4p)^{n}r}\right)^{j} ||D_{1}f((\frac{(4p)^{n}r}{d})^{j}x_{1}, \cdots, (\frac{(4p)^{n}r}{d})^{j}x_{(4p)^{n}})||$$

$$\leq \lim_{j \to \infty} \left(\frac{d}{(4p)^{n}r}\right)^{j} \varphi((\frac{(4p)^{n}r}{d})^{j}x_{1}, \cdots, (\frac{(4p)^{n}r}{d})^{j}x_{(4p)^{n}})$$

$$= 0$$

for all $x_1, \dots, x_{(4p)^n} \in {}_AB$. Hence $D_1T(x_1, \dots, x_{(4p)^n}) = 0$ for all $x_1, \dots, x_{(4p)^n} \in {}_AB$. Put $x_1 = \dots = x_{(4p)^n} = x$ in $D_1T(x_1, \dots, x_{(4p)^n}) = 0$. Then

$$\frac{d}{r}T(\frac{(4p)^n r}{d}x) + (4p)^n T(x) - 2(4p)^n T(x) = 0$$

for all $x \in {}_{A}B$. So

$$T(\frac{(4p)^n r}{d}x) = \frac{(4p)^n r}{d}T(x)$$

for all $x \in {}_{A}B$. Since

$$\frac{d}{r}T(\frac{rx_1 + \dots + rx_{(4p)^n}}{d}) = \frac{d}{r}T(\frac{(4p)^n r(x_1 + \dots + x_{(4p)^n})}{(4p)^n d})$$

$$= \frac{d}{r}\frac{(4p)^n r}{d}T(\frac{x_1 + \dots + x_{(4p)^n}}{(4p)^n})$$

$$= (4p)^n T(\frac{x_1 + \dots + x_{(4p)^n}}{(4p)^n})$$

for all $x_1, \dots, x_{(4p)^n} \in {}_AB$,

$$(4p)^{n}T(\frac{x_{1}+\dots+x_{(4p)^{n}}}{(4p)^{n}}) + 4p \sum_{i=1}^{(4p)^{n-1}} T(\frac{x_{4pi-4p+1}+\dots+x_{4pi}}{4p})$$

$$= 2\sum_{i=1}^{(4p)^{n}} T(\frac{x_{i}+x_{i+1}}{2})$$

for all $x_1 = x_{(4p)^n+1}, x_2, \dots, x_{(4p)^n} \in {}_AB$. By Theorem 2.1, T is additive. Moreover, by passing to the limit in (3.4) as $j \to \infty$, we get the inequality (3.3).

Now let $L: {}_{A}B \to {}_{A}C$ be another additive mapping satisfying

$$||f(x) - L(x)|| \le \frac{1}{(4n)^n} \widetilde{\varphi}(x, \dots, x)$$

for all $x \in {}_{A}B$.

$$\begin{split} \|T(x) - L(x)\| &= (\frac{d}{(4p)^n r})^j \|T((\frac{(4p)^n r}{d})^j x) - L((\frac{(4p)^n r}{d})^j x)\| \\ &\leq (\frac{d}{(4p)^n r})^j \|T((\frac{(4p)^n r}{d})^j x) - f((\frac{(4p)^n r}{d})^j x)\| \\ &+ (\frac{d}{(4p)^n r})^j \|f((\frac{(4p)^n r}{d})^j x) - L((\frac{(4p)^n r}{d})^j x)\| \\ &\leq \frac{2}{(4p)^n} (\frac{d}{(4p)^n r})^j \widetilde{\varphi}((\frac{(4p)^n r}{d})^j x, \cdots, (\frac{(4p)^n r}{d})^j x), \end{split}$$

which tends to zero as $j \to \infty$ by (3.1). Thus T(x) = L(x) for all $x \in {}_AB$. This proves the uniqueness of T.

By the assumption, for each $u \in U(A)$,

$$\left(\frac{d}{(4p)^{n}r}\right)^{j} \|D_{u}f\left(\left(\frac{(4p)^{n}r}{d}\right)^{j}x, \cdots, \left(\frac{(4p)^{n}r}{d}\right)^{j}x\right)\| \\
\leq \left(\frac{d}{(4p)^{n}r}\right)^{j} \varphi\left(\left(\frac{(4p)^{n}r}{d}\right)^{j}x, \cdots, \left(\frac{(4p)^{n}r}{d}\right)^{j}x\right)$$

for all $x \in {}_{A}B$, and

$$(\frac{d}{(4p)^n r})^j ||D_u f((\frac{(4p)^n r}{d})^j x, \cdots, (\frac{(4p)^n r}{d})^j x)|| \to 0$$

as $j \to \infty$ for all $x \in {}_AB$. So

$$D_u T(x, \dots, x) = \lim_{j \to \infty} \left(\frac{d}{(4p)^n r}\right)^j D_u f\left(\left(\frac{(4p)^n r}{d}\right)^j x, \dots, \left(\frac{(4p)^n r}{d}\right)^j x\right) = 0$$

for all $u \in U(A)$ and all $x \in {}_AB$. Hence

$$D_u T(x, \dots, x) = \frac{d}{r} u T(\frac{(4p)^n r}{d} x) + (4p)^n u T(x) - 2(4p)^n T(ux) = 0$$

for all $u \in U(A)$ and all $x \in {}_AB$. So

$$uT(x) = T(ux)$$

for all $u \in U(A)$ and all $x \in {}_AB$.

Now let $a \in A \ (a \neq 0)$ and M an integer greater than 4|a|. Then

$$\left|\frac{a}{M}\right| = \frac{1}{M}|a| < \frac{|a|}{4|a|} = \frac{1}{4} < 1 - \frac{2}{3} = \frac{1}{3}.$$

By Lemma 1.1, there exist three elements $u_1, u_2, u_3 \in U(A)$ such that $3\frac{a}{M} = u_1 + u_2 + u_3$. And $T(x) = T(3 \cdot \frac{1}{3}x) = 3T(\frac{1}{3}x)$ for all $x \in {}_AB$. So $T(\frac{1}{3}x) = \frac{1}{3}T(x)$ for all $x \in {}_AB$. Thus

$$T(ax) = T(\frac{M}{3} \cdot 3\frac{a}{M}x) = M \cdot T(\frac{1}{3} \cdot 3\frac{a}{M}x) = \frac{M}{3}T(3\frac{a}{M}x)$$

$$= \frac{M}{3}T(u_1x + u_2x + u_3x) = \frac{M}{3}(T(u_1x) + T(u_2x) + T(u_3x))$$

$$= \frac{M}{3}(u_1 + u_2 + u_3)T(x) = \frac{M}{3} \cdot 3\frac{a}{M}T(x)$$

$$= aT(x)$$

for all $x \in {}_{A}B$. Obviously, T(0x) = 0T(x) for all $x \in {}_{A}B$. Hence

$$T(ax + by) = T(ax) + T(by) = aT(x) + bT(y)$$

for all $a, b \in A$ and all $x, y \in {}_{A}B$. So the unique additive mapping $T: {}_{A}B \to {}_{A}C$ is an A-linear mapping, as desired. \square

Applying the unital C^* -algebra $\mathbb C$ to Theorem 3.1, one can obtain the following.

COROLLARY 3.2. Let E_1 and E_2 be complex Banach spaces with norms $||\cdot||$ and $||\cdot||$, respectively. Let $f: E_1 \to E_2$ be a mapping with f(0) = 0 for which there exists a function $\varphi: E_1^{(4p)^n} \to [0, \infty)$ such that

$$\widetilde{\varphi}(x_{1}, \cdots, x_{(4p)^{n}}) :$$

$$= \sum_{j=0}^{\infty} (\frac{d}{(4p)^{n}r})^{j} \varphi((\frac{(4p)^{n}r}{d})^{j} x_{1}, \cdots, (\frac{(4p)^{n}r}{d})^{j} x_{(4p)^{n}})$$

$$< \infty,$$

$$\|D_{\lambda} f(x_{1}, \cdots, x_{(4p)^{n}})\| \le \varphi(x_{1}, \cdots, x_{(4p)^{n}})$$

for all $\lambda \in \mathbb{T}^1 := \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}$ and all $x_1, \dots, x_{(4p)^n} \in E_1$. Then there exists a unique \mathbb{C} -linear mapping $T : E_1 \to E_2$ such that

$$||f(x) - T(x)|| \le \frac{1}{(4p)^n} \widetilde{\varphi}(x, \dots, x)$$

for all $x \in E_1$.

THEOREM 3.3. Let $f: {}_AB \to {}_AC$ be a mapping with f(0) = 0 for which there exists a function $\varphi: {}_AB^{(4p)^n} \to [0, \infty)$ such that

(3.6)
$$\widetilde{\varphi}(x_1, \dots, x_{(4p)^n}) :$$

$$= \sum_{j=0}^{\infty} \left(\frac{d}{2r}\right)^j \varphi\left(\left(\frac{2r}{d}\right)^j x_1, \dots, \left(\frac{2r}{d}\right)^j x_{(4p)^n}\right) < \infty,$$

$$||D_{u}f(x_{1}, \dots, x_{(4p)^{n}})||$$

$$= ||(4p)^{n}uf(\frac{x_{1} + \dots + x_{(4p)^{n}}}{(4p)^{n}}) + 4p \sum_{i=1}^{(4p)^{n-1}} uf(\frac{x_{4pi-4p+1} + \dots + x_{4pi}}{4p})$$

$$(3.7) \qquad -\sum_{i=1}^{(4p)^{n}} \frac{d}{r}f(\frac{urx_{i} + urx_{i+1}}{d})|| \leq \varphi(x_{1}, \dots, x_{(4p)^{n}})$$

for all $u \in U(A)$ and all $x_1 = x_{(4p)^n+1}, x_2, \dots, x_{(4p)^n} \in {}_AB$. Then there exists a unique A-linear mapping $T: {}_AB \to {}_AC$ such that

(3.8)
$$||f(x) - T(x)|| \le \frac{1}{2(4p)^n} \widetilde{\varphi}(x, \dots, x)$$

for all $x \in {}_{A}B$.

Proof. Put $u = 1 \in U(A)$. Let $x_1 = \cdots = x_{(4p)^n} = x$ in (3.7). Then we get

$$\|(4p)^n f(x) + (4p)^n f(x) - \frac{(4p)^n d}{r} f(\frac{2r}{d}x)\| \le \varphi(x, \dots, x)$$

for all $x \in {}_{A}B$. So one can obtain that

$$||f(x) - \frac{d}{2r}f(\frac{2r}{d}x)|| \le \frac{1}{2(4p)^n}\varphi(x, \dots, x)$$

for all $x \in {}_{A}B$. We prove by induction on j that

$$\|(\frac{d}{2r})^{j} f((\frac{2r}{d})^{j} x) - (\frac{d}{2r})^{j+1} f((\frac{2r}{d})^{j+1} x)\|$$

$$\leq \frac{1}{2(4p)^{n}} (\frac{d}{2r})^{j} \varphi((\frac{2r}{d})^{j} x, \cdots, (\frac{2r}{d})^{j} x)$$

for all $x \in {}_{A}B$. So we get

(3.9)
$$||f(x) - (\frac{d}{2r})^{j} f((\frac{2r}{d})^{j} x)||$$

$$\leq \frac{1}{2(4p)^{n}} \sum_{m=0}^{j-1} (\frac{d}{2r})^{m} \varphi((\frac{2r}{d})^{m} x, \cdots, (\frac{2r}{d})^{m} x)$$

for all $x \in {}_{A}B$.

Let x be an element in ${}_{A}B$. For positive integers l and m with l > m,

$$\| (\frac{d}{2r})^l f((\frac{2r}{d})^l x) - (\frac{d}{2r})^m f((\frac{2r}{d})^m x) \|$$

$$\leq \frac{1}{2(4p)^n} \sum_{i=m}^{l-1} (\frac{d}{2r})^j \varphi((\frac{2r}{d})^j x, \cdots, (\frac{2r}{d})^j x),$$

which tends to zero as $m \to \infty$ by (3.6). So $\{(\frac{d}{2r})^j f((\frac{2r}{d})^j x)\}$ is a Cauchy sequence for all $x \in {}_AB$. Since the space ${}_AC$ is complete, the sequence $\{(\frac{d}{2r})^j f((\frac{2r}{d})^j x)\}$ converges for all $x \in {}_AB$. We can define a mapping $T: {}_AB \to {}_AC$ by

(3.10)
$$T(x) = \lim_{j \to \infty} \left(\frac{d}{2r}\right)^j f\left(\left(\frac{2r}{d}\right)^j x\right)$$

for all $x \in {}_{A}B$.

By (3.6) and (3.10), we get

$$||D_1 T(x_1, \dots, x_{(4p)^n})|| = \lim_{j \to \infty} (\frac{d}{2r})^j ||D_1 f((\frac{2r}{d})^j x_1, \dots, (\frac{2r}{d})^j x_{(4p)^n})||$$

$$\leq \lim_{j \to \infty} (\frac{d}{2r})^j \varphi((\frac{2r}{d})^j x_1, \dots, (\frac{2r}{d})^j x_{(4p)^n}) = 0$$

for all $x_1, \dots, x_{(4p)^n} \in {}_AB$. Hence $D_1T(x_1, \dots, x_{(4p)^n}) = 0$ for all $x_1, \dots, x_{(4p)^n} \in {}_AB$. Put $x_1 = \dots = x_{(4p)^n} = x$ in $D_1T(x_1, \dots, x_{(4p)^n}) = 0$. Then

$$(4p)^n T(x) + (4p)^n T(x) - \frac{(4p)^n d}{r} T(\frac{2r}{d}x) = 0$$

for all $x \in {}_{A}B$. So

$$T(\frac{2r}{d}x) = \frac{2r}{d}T(x)$$

for all $x \in {}_{A}B$. Since

$$\frac{d}{r}T(\frac{rx_i + rx_{i+1}}{d}) = \frac{d}{r}T(\frac{2r(x_i + x_{i+1})}{2d}) = \frac{d}{r}\frac{2r}{d}T(\frac{x_i + x_{i+1}}{2}) = 2T(\frac{x_i + x_{i+1}}{2})$$

for all $x_i, x_{i+1} \in {}_AB$,

$$(4p)^{n}T(\frac{x_{1}+\cdots+x_{(4p)^{n}}}{(4p)^{n}}) + 4p \sum_{i=1}^{(4p)^{n-1}} T(\frac{x_{4pi-4p+1}+\cdots+x_{4pi}}{4p})$$

$$= 2\sum_{i=1}^{(4p)^{n}} T(\frac{x_{i}+x_{i+1}}{2})$$

for all $x_1 = x_{(4p)^n+1}, x_2, \dots, x_{(4p)^n} \in {}_AB$. By Theorem 2.1, T is additive. Moreover, by passing to the limit in (3.9) as $j \to \infty$, we get the inequality (3.8).

The rest of the proof is the same as the proof of Theorem 3.1.

Theorem 3.4. Let $f: {}_AB \to {}_AC$ be a mapping with f(0) = 0 for which there exists a function $\varphi: {}_AB^{(4p)^n} \to [0, \infty)$ such that

$$(3.11) \quad \widetilde{\varphi}(x_{1}, \dots, x_{(4p)^{n}}) :$$

$$= \sum_{j=0}^{\infty} 2^{j} \varphi(-\frac{1}{2^{j}} x_{1}, \frac{1}{2^{j}} x_{2}, \frac{1}{2^{j}} x_{3}, \dots,$$

$$-\frac{1}{2^{j}} x_{(4p)^{n}-4p+1}, \frac{1}{2^{j}} x_{(4p)^{n}-4p+2}, \dots, \frac{1}{2^{j}} x_{(4p)^{n}}) < \infty,$$

$$\|D_{u} f(x_{1}, \dots, x_{(4p)^{n}})\| = \|(4p)^{n} u f(\frac{x_{1} + \dots + x_{(4p)^{n}}}{(4p)^{n}})$$

$$+4p \sum_{i=1}^{(4p)^{n-1}} u f(\frac{x_{4pi-4p+1} + \dots + x_{4pi}}{4p})$$

$$-2 \sum_{i=1}^{(4p)^{n}} f(\frac{ux_{i} + ux_{i+1}}{2})\|$$

$$\leq \varphi(x_{1}, \dots, x_{(4p)^{n}})$$

for all $u \in U(A)$ and all $x_1 = x_{(4p)^n+1}, x_2, \cdots, x_{(4p)^n} \in {}_AB$. Then there exists a unique A-linear mapping $T: {}_AB \to {}_AC$ such that

$$(3.13) ||f(x) - T(x)|| \le \frac{1}{(4p)^n} \widetilde{\varphi}(x, \dots, x)$$

for all $x \in {}_{A}B$.

Proof. Put $u = 1 \in U(A)$. Let $x_{4i-3} = x$ and $x_{4i-2} = x_{4i-1} = x_{4i} = y$ in (3.12) for all $i = 1, \dots, p(4p)^{n-1}$. Then we get

$$\|(4p)^n f(\frac{x+3y}{4}) + (4p)^n f(\frac{x+3y}{4}) - 4p (4p)^{n-1} f(\frac{x+y}{2}) - 4p (4p)^{n-1} f(y)\|$$

$$(3.14) \qquad \leq \varphi(x, y, y, y, \dots, x, y, y, y)$$

for all $x, y \in {}_{A}B$. Replacing x and y by -x and x in (3.14), respectively, we get

$$||2 (4p)^n f(\frac{x}{2}) - (4p)^n f(x)|| \le \varphi(-x, x, x, x, \dots, -x, x, x, x)$$

for all $x \in {}_{A}B$. So one can obtain that

$$||f(x) - 2f(\frac{x}{2})|| \le \frac{1}{(4p)^n} \varphi(-x, x, x, x, \dots, -x, x, x, x)$$

for all $x \in {}_{A}B$. We prove by induction on j that

$$||2^{j} f(\frac{1}{2^{j}}x) - 2^{j+1} f(\frac{1}{2^{j+1}}x)||$$

$$\leq \frac{2^{j}}{(4p)^{n}} \varphi(-\frac{1}{2^{j}}x, \frac{1}{2^{j}}x, \frac{1}{2^{j}}x, \frac{1}{2^{j}}x, \cdots, -\frac{1}{2^{j}}x, \frac{1}{2^{j}}x, \frac{1}{2^{j}}x, \frac{1}{2^{j}}x)$$

for all $x \in {}_{A}B$. So we get

$$||f(x) - 2^{j} f(\frac{1}{2^{j}} x)|| \leq \frac{1}{(4p)^{n}} \sum_{m=0}^{j-1} 2^{m} \varphi(-\frac{1}{2^{m}} x, \frac{1}{2^{m}} x, \frac{1}{2^{m}} x, \frac{1}{2^{m}} x, \cdots,$$

$$(3.15) \qquad - \frac{1}{2^{m}} x, \frac{1}{2^{m}} x, \frac{1}{2^{m}} x, \frac{1}{2^{m}} x)$$

for all $x \in {}_{A}B$.

Let x be an element in ${}_{A}B$. For positive integers l and m with l > m,

$$||2^{l}f(\frac{1}{2^{l}}x) - 2^{m}f(\frac{1}{2^{m}}x)||$$

$$\leq \frac{1}{(4p)^{n}} \sum_{j=m}^{l-1} 2^{j}\varphi(-\frac{1}{2^{j}}x, \frac{1}{2^{j}}x, \frac{1}{2^{j}}x, \frac{1}{2^{j}}x, \cdots, -\frac{1}{2^{j}}x, \frac{1}{2^{j}}x, \frac{1}{2^{j}}x, \frac{1}{2^{j}}x),$$

which tends to zero as $m \to \infty$ by (3.11). So $\{2^j f(\frac{1}{2^j}x)\}$ is a Cauchy sequence for all $x \in {}_AB$. Since ${}_AC$ is complete, the sequence $\{2^j f(\frac{1}{2^j}x)\}$

converges for all $x \in {}_{A}B$. We can define a mapping $T : {}_{A}B \to {}_{A}C$ by

(3.16)
$$T(x) = \lim_{j \to \infty} 2^j f(\frac{1}{2^j}x)$$

for all $x \in {}_{A}B$.

By (3.11) and (3.16), we get

$$||D_1 T(x_1, \dots, x_{(4p)^n})|| = \lim_{j \to \infty} 2^j ||D_1 f(\frac{1}{2^j} x_1, \dots, \frac{1}{2^j} x_{(4p)^n})||$$

$$\leq \lim_{j \to \infty} 2^j \varphi(\frac{1}{2^j} x_1, \dots, \frac{1}{2^j} x_{(4p)^n}) = 0$$

for all $x_1, \dots, x_{(4p)^n} \in {}_AB$. Hence $D_1T(x_1, \dots, x_{(4p)^n}) = 0$ for all $x_1, \dots, x_{(4p)^n} \in {}_AB$. By Theorem 2.1, T is additive. Moreover, by passing to the limit in (3.15) as $j \to \infty$, we get the inequality (3.13).

The rest of the proof is the same as the proof of Theorem 3.1.

THEOREM 3.5. Let $f: {}_AB \to {}_AC$ be a mapping with f(0) = 0 for which there exists a function $\varphi: {}_AB^{(4p)^n} \to [0, \infty)$ such that

$$\widetilde{\varphi}(x_{1}, \dots, x_{(4p)^{n}}) :$$

$$= \sum_{j=0}^{\infty} \left(\frac{d}{(4p)^{n}r}\right)^{j} \varphi\left(\left(\frac{(4p)^{n}r}{d}\right)^{j} x_{1}, \dots, \left(\frac{(4p)^{n}r}{d}\right)^{j} x_{(4p)^{n}}\right) < \infty,$$

$$\|\frac{d}{r} u f\left(\frac{rx_{1} + \dots + rx_{(4p)^{n}}}{d}\right) + 8p \sum_{i=1}^{(4p)^{n-1}} u f\left(\frac{x_{4pi-4p+1} + \dots + x_{4pi}}{4p}\right)$$

$$-3 \sum_{i=1}^{(4p)^{n}} f\left(\frac{ux_{i} + ux_{i+1} + ux_{i+2}}{3}\right) \| \leq \varphi(x_{1}, \dots, x_{(4p)^{n}})$$

for all $u \in U(A)$ and all $x_1 = x_{(4p)^n+1}, x_2 = x_{(4p)^n+2}, x_3, \dots, x_{(4p)^n} \in {}_AB$. Then there exists a unique A-linear mapping $T: {}_AB \to {}_AC$ such that

$$||f(x) - T(x)|| \le \frac{1}{(4p)^n} \widetilde{\varphi}(x, \dots, x)$$

for all $x \in {}_{A}B$.

Proof. The proof is similar to the proof of Theorem 3.1. \Box

THEOREM 3.6. Let $f: {}_{A}B \to {}_{A}C$ be a mapping with f(0) = 0 for which there exists a function $\varphi: {}_{A}B^{(4p)^n} \to [0, \infty)$ such that

$$\widetilde{\varphi}(x_1, \dots, x_{(4p)^n}) := \sum_{j=0}^{\infty} (\frac{d}{3r})^j \varphi((\frac{3r}{d})^j x_1, \dots, (\frac{3r}{d})^j x_{(4p)^n}) < \infty,$$

$$\|(4p)^n u f(\frac{x_1 + \dots + x_{(4p)^n}}{(4p)^n}) + 8p \sum_{i=1}^{(4p)^{n-1}} u f(\frac{x_{4pi-4p+1} + \dots + x_{4pi}}{4p})$$

$$-\frac{d}{r} \sum_{i=1}^{(4p)^n} f(\frac{rux_i + rux_{i+1} + rux_{i+2}}{d}) \| \le \varphi(x_1, \dots, x_{(4p)^n})$$

for all $u \in U(A)$ and all $x_1 = x_{(4p)^n+1}, x_2 = x_{(4p)^n+2}, x_3, \dots, x_{(4p)^n} \in {}_AB$. Then there exists a unique A-linear mapping $T: {}_AB \to {}_AC$ such that

$$||f(x) - T(x)|| \le \frac{1}{3 (4p)^n} \widetilde{\varphi}(x, \dots, x)$$

for all $x \in {}_{A}B$.

Proof. The proof is similar to the proofs of Theorems 3.1 and 3.3. \square

THEOREM 3.7. Let $f: {}_AB \to {}_AC$ be a mapping with f(0) = 0 for which there exists a function $\varphi: {}_AB^{(4p)^n} \to [0, \infty)$ such that

$$(3.17) \quad \widetilde{\varphi}(x_{1}, \cdots, x_{(4p)^{n}}) :$$

$$\sum_{j=0}^{\infty} 4^{j} \varphi(-\frac{2}{4^{j}} x_{1}, \frac{1}{4^{j}} x_{2}, \frac{1}{4^{j}} x_{3}, \cdots,$$

$$-\frac{2}{4^{j}} x_{(4p)^{n}-4p+1}, \frac{1}{4^{j}} x_{(4p)^{n}-4p+2}, \cdots, \frac{1}{4^{j}} x_{(4p)^{n}}) < \infty,$$

$$\|D_{u} f(x_{1}, \cdots, x_{(4p)^{n}})\| = \|(4p)^{n} u f(\frac{x_{1} + \cdots + x_{(4p)^{n}}}{(4p)^{n}})$$

$$+ 8p \sum_{i=1}^{(4p)^{n-1}} u f(\frac{x_{4pi-4p+1} + \cdots + x_{4pi}}{4p})$$

$$- 3 \sum_{i=1}^{(4p)^{n}} f(\frac{u x_{i} + u x_{i+1} + u x_{i+2}}{3})\|$$

$$\leq \varphi(x_{1}, \cdots, x_{(4p)^{n}})$$

for all $u \in U(A)$ and all $x_1 = x_{(4p)^n+1}, x_2 = x_{(4p)^n+2}, x_3, \dots, x_{(4p)^n} \in {}_AB$. Then there exists a unique A-linear mapping $T : {}_AB \to {}_AC$ such that

(3.19)
$$||f(x) - T(x)|| \le \frac{1}{3p \cdot (4p)^{n-1}} \widetilde{\varphi}(x, \dots, x)$$

for all $x \in {}_{A}B$.

Proof. Put $u = 1 \in U(A)$. Let $x_{4i-3} = x$ and $x_{4i-2} = x_{4i-1} = x_{4i} = y$ in (3.18) for all $i = 1, \dots, p(4p)^{n-1}$. Then we get

$$\|(4p)^n f(\frac{x+3y}{4}) + 2 (4p)^n f(\frac{x+3y}{4}) - 9p (4p)^{n-1} f(\frac{x+2y}{3}) - 3p (4p)^{n-1} f(y)\|$$

$$\leq \varphi(x, y, y, y, \dots, x, y, y, y)$$

for all $x, y \in {}_{A}B$. Replacing x and y by -2x and x in (3.20), respectively, we get

$$||3 (4p)^n f(\frac{x}{4}) - 3p (4p)^{n-1} f(x)|| \le \varphi(-2x, x, x, x, \dots, -2x, x, x, x)$$

for all $x \in {}_{A}B$. So one can obtain that

$$||f(x) - 4f(\frac{x}{4})|| \le \frac{1}{3p (4p)^{n-1}} \varphi(-2x, x, x, x, \dots, -2x, x, x, x)$$

for all $x \in {}_{A}B$. We prove by induction on j that

$$||4^{j}f(\frac{1}{4^{j}}x) - 4^{j+1}f((\frac{1}{4^{j+1}}x))||$$

$$\leq \frac{4^{j}}{3p(4p)^{n-1}}\varphi(-\frac{2}{4^{j}}x, \frac{1}{4^{j}}x, \frac{1}{4^{j}}x, \frac{1}{4^{j}}x, \cdots, -\frac{2}{4^{j}}x, \frac{1}{4^{j}}x, \frac{1}{4^{j}}x, \frac{1}{4^{j}}x)$$

for all $x \in {}_{A}B$. So we get

$$||f(x)| - 4^{j} f(\frac{1}{4^{j}}x)|| \leq \frac{1}{3p} \frac{1}{(4p)^{n-1}} \sum_{m=0}^{j-1} 4^{m} \varphi(-\frac{2}{4^{m}}x, \frac{1}{4^{m}}x, \frac{1}{4^{m}}x, \frac{1}{4^{m}}x, \cdots, \frac{1}{4^{m}}x, \frac{1}{4^{m}$$

for all $x \in {}_{A}B$.

Let x be an element in ${}_{A}B$. For positive integers l and m with l > m,

$$||4^{l}f(\frac{1}{4^{l}}x) - 4^{m}f(\frac{1}{4^{m}}x)||$$

$$\leq \frac{1}{3p} \frac{1}{(4p)^{n-1}} \sum_{j=m}^{l-1} 4^{j}\varphi(-\frac{2}{4^{j}}x, \frac{1}{4^{j}}x, \frac{1}{4^{j}}x, \frac{1}{4^{j}}x, \cdots, -\frac{2}{4^{j}}x, \frac{1}{4^{j}}x, \frac{1}{4^{j}}x, \frac{1}{4^{j}}x),$$

which tends to zero as $m \to \infty$ by (3.17). So $\{4^j f(\frac{1}{4^j}x)\}$ is a Cauchy sequence for all $x \in {}_AB$. Since ${}_AC$ is complete, the sequence $\{4^j f(\frac{1}{4^j}x)\}$ converges for all $x \in {}_AB$. We can define a mapping $T : {}_AB \to {}_AC$ by

(3.22)
$$T(x) = \lim_{j \to \infty} 4^{j} f(\frac{1}{4^{j}}x)$$

for all $x \in {}_{A}B$.

By (3.17) and (3.22), we get

$$||D_1 T(x_1, \dots, x_{(4p)^n})|| = \lim_{j \to \infty} 4^j ||D_1 f(\frac{1}{4^j} x_1, \dots, \frac{1}{4^j} x_{(4p)^n})||$$

$$\leq \lim_{j \to \infty} 4^j \varphi(\frac{1}{4^j} x_1, \dots, \frac{1}{4^j} x_{(4p)^n}) = 0$$

for all $x_1, \dots, x_{(4p)^n} \in {}_AB$. Hence $D_1T(x_1, \dots, x_{(4p)^n}) = 0$ for all $x_1, \dots, x_{(4p)^n} \in {}_AB$. By Theorem 2.2, T is additive. Moreover, by passing to the limit in (3.21) as $j \to \infty$, we get the inequality (3.19).

The rest of the proof is the same as the proof of Theorem 3.1.

4. Stability of partitioned functional equations in Banach algebras and approximate algebra homomorphisms

In this section, let A and B be Banach algebras with norms $||\cdot||$ and $||\cdot||$, respectively.

D.G. Bourgin [2] proved the stability of ring homomorphisms between Banach algebras. In [1], R. Badora generalized the Bourgin's result.

We prove the Hyers-Ulam stability of algebra homomorphisms in Banach algebras associated with the functional equation (1.1).

THEOREM 4.1. Let A and B be complex Banach algebras. Let $f: A \to B$ be a mapping with f(0) = 0 for which there exists a function

 $\psi: A \times A \to [0, \infty)$ such that

(4.1)
$$\widetilde{\psi}(x,y) := \sum_{j=0}^{\infty} \left(\frac{d}{(4p)^n r}\right)^j \psi\left(\left(\frac{(4p)^n r}{d}\right)^j x, y\right) < \infty,$$

$$(4.3) ||f(x \cdot y) - f(x)f(y)|| \le \psi(x, y)$$

for all $\lambda \in \mathbb{T}^1$ and all $x, y, x_1, \dots, x_{(4p)^n} \in A$, where φ and $D_{\lambda}f$ satisfy the conditions given in the statement of Theorem 3.1. Then there exists a unique algebra homomorphism $T: A \to B$ satisfying (3.3).

Proof. Under the assumption (4.2), in Corollary 3.2, we showed that there exists a unique \mathbb{C} -linear mapping $T:A\to B$ satisfying (3.3). The \mathbb{C} -linear mapping $T:A\to B$ was given by

$$T(x) = \lim_{j \to \infty} \left(\frac{d}{(4p)^n r}\right)^j f\left(\left(\frac{(4p)^n r}{d}\right)^j x\right)$$

for all $x \in A$. Let

$$R(x,y) = f(x \cdot y) - f(x)f(y)$$

for all $x, y \in A$. By (4.1), we get

$$\lim_{j \to \infty} (\frac{d}{(4p)^n r})^j R((\frac{(4p)^n r}{d})^j x, y) = 0$$

for all $x, y \in A$. So

$$T(x \cdot y) = \lim_{j \to \infty} \left(\frac{d}{(4p)^n r}\right)^j f\left(\left(\frac{(4p)^n r}{d}\right)^j (x \cdot y)\right)$$

$$(4.4) = \lim_{j \to \infty} \left(\frac{d}{(4p)^n r}\right)^j f\left(\left(\frac{(4p)^n r}{d}\right)^j x\right) y$$

$$= \lim_{j \to \infty} \left(\frac{d}{(4p)^n r}\right)^j \left(f\left(\frac{(4p)^n r}{d}\right)^j x\right) f(y) + R\left(\left(\frac{(4p)^n r}{d}\right)^j x, y\right)$$

$$= T(x) f(y)$$

for all $x, y \in A$. Thus

$$T(x)f((\frac{(4p)^n r}{d})^j y) = T(x((\frac{(4p)^n r}{d})^j y)) = T(((\frac{(4p)^n r}{d})^j x)y)$$
$$= T((\frac{(4p)^n r}{d})^j x)f(y) = (\frac{(4p)^n r}{d})^j T(x)f(y)$$

for all $x, y \in A$. Hence

(4.5)
$$T(x)(\frac{d}{(4p)^n r})^j f((\frac{(4p)^n r}{d})^j y) = T(x)f(y)$$

for all $x, y \in A$. Taking the limit in (4.5) as $j \to \infty$, we obtain

$$T(x)T(y) = T(x)f(y)$$

for all $x, y \in A$. Therefore,

$$T(x \cdot y) = T(x)T(y)$$

for all $x, y \in A$. So $T: A \to B$ is an algebra homomorphism.

THEOREM 4.2. Let A and B be complex Banach *-algebras. Let $f: A \to B$ be a mapping with f(0) = 0 for which there exists a function $\psi: A \times A \to [0, \infty)$ satisfying (4.1) and (4.3) such that

$$||D_{\lambda}f(x_1,\dots,x_{(4p)^n})|| \le \varphi(x_1,\dots,x_{(4p)^n}),$$

 $||f(x^*)-f(x)^*|| \le \varphi(x,\dots,x)$

for all $\lambda \in \mathbb{T}^1$ and all $x, x_1, \dots, x_{(4p)^n} \in A$, where φ and $D_{\lambda}f$ satisfy the conditions given in the statement of Theorem 3.1. Then there exists a unique *-algebra homomorphism $T: A \to B$ satisfying (3.3).

Proof. By the same reasoning as the proof of Theorem 4.1, there exists a unique \mathbb{C} -linear mapping $T: A \to B$ satisfying (3.3).

Now

$$\left(\frac{d}{(4p)^{n}r}\right)^{j} \|f((\frac{(4p)^{n}r}{d})^{j}x^{*}) - f((\frac{(4p)^{n}r}{d})^{j}x)^{*}\| \\
\leq \left(\frac{d}{(4p)^{n}r}\right)^{j} \varphi((\frac{(4p)^{n}r}{d})^{j}x, \cdots, (\frac{(4p)^{n}r}{d})^{j}x)$$

for all $x \in A$. Thus

$$\left(\frac{d}{(4p)^n r}\right)^j \|f((\frac{(4p)^n r}{d})^j x^*) - f((\frac{(4p)^n r}{d})^j x)^*\| \to 0$$

as $j \to \infty$ for all $x \in A$. Hence

$$T(x^*) = \lim_{j \to \infty} \left(\frac{d}{(4p)^n r}\right)^j f\left(\left(\frac{(4p)^n r}{d}\right)^j x^*\right)$$
$$= \lim_{j \to \infty} \left(\frac{d}{(4p)^n r}\right)^j f\left(\left(\frac{(4p)^n r}{d}\right)^j x\right)^* = T(x)^*$$

for all $x \in A$.

The rest of the proof is the same as the proof of Theorem 4.1. \Box

Similarly, for the other cases given in Section 3, one can obtain similar results to the theorems given above.

References

- [1] R. Badora, On approximate ring homomorphisms, J. Math. Anal. Appl. 276 (2002), 589–597.
- [2] D.G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385–397.
- [3] D.H. Hyers, G. Isac and Th.M. Rassias, *Stability of Functional Equations in Several Variables*, Birkhäuser, Berlin, Basel and Boston, 1998.
- [4] B.E. Johnson, An approximately multiplicative map between Banach algebras, J. Lond. Math. Soc. **37** (1988), 294–316.
- [5] R. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. **57** (1985), 249–266.
- [6] C. Park, Partitioned functional equations in Banach modules over a C*-algebra (preprint).
- [7] H. Schröder, K-Theory for Real C*-Algebras and Applications, Pitman Research Notes in Mathematics 290, Longman, Essex, 1993.
- [8] T. Trif, Hyers-Ulam-Rassias stability of a Jensen type functional equation, J. Math. Anal. Appl. **250** (2000), 579–588.
- [9] T. Trif, On the stability of a functional equation deriving from an inequality of T. Popoviciu for convex functions, J. Math. Anal. Appl. 272 (2002), 604–616.

Department of Mathematics Chungnam National University DaeJeon 305-764, South Korea E-mail: dhboo@cnu.ac.kr

Department of Mathematics College of Science Yasouj University Yasouj 75914-353, Iran E-mail: azadi@mail.yu.ac.ir

Department of Mathematics Research Institute for Natural Sciences Hanyang University Seoul 133-791, South Korea E-mail: baak@hanyang.ac.kr