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FUNCTIONAL EQUATIONS IN BANACH MODULES
AND APPROXIMATE ALGEBRA HOMOMORPHISMS
IN BANACH ALGEBRAS

DeEok-HoON B0oO, HASSAN AzADI KENARY AND CHOONKIL PARK*

ABSTRACT. We prove the Hyers-Ulam stability of partitioned func-
tional equations in Banach modules over a unital C*-algebra. It is
applied to show the stability of algebra homomorphisms in Banach
algebras associated with partitioned functional equations in Banach
algebras.

1. Introduction and preliminaries

Recently, T. Trif [9, Theorem 2.1] proved that, for vector spaces V/
and W, a mapping f : V — W with f(0) = 0 satisfies the functional
equation

T+ T,

N n—2Cr—af( )+ a—2Ci Z [ ()
=1

= kY

1<t << <n

for all z1,---,x, € V if and only if the mapping f : V — W satisfies
the additive Cauchy equation f(z +y) = f(z) + f(y) for all z,y € V.

In [6], Park conjectured the following, and gave a partial answer for
the conjecture.
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Conjecture. A mapping f : V — W with f(0) = 0 satisfies the
functional equation

n—1

p
n x1++xn Li— 1+...+xi
PI(E———) + (pk—p) Y f(E =)
p — p
pn
Ti+ -+ Tigp1
(11) = Ry g e
i=1
for all 21 = xpny1, -+, The1 = Tpngg—1, Tk, - -+, Tpn € V if and only if the

mapping f : V — W satisfies the additive Cauchy equation f(x + y) =
f(x)+ f(y) for all z,y € V.

Throughout this paper, let A be a unital C*-algebra with norm | - |
and U(A) the unitary group of A. Let 4B and 4C be left Banach A-
modules with norms ||-|| and ||-||, respectively. Let d, r and p be positive
integers.

The following is useful to prove the stability of linear functional equa-
tions in Banach modules over a unital C*-algebra.

LEMMA 1.1. ([5, Theorem 1]) Let a € A and |a| < 1 — 2 for some
integer m greater than 2. Then there are m elements uy, - - - , u,, € U(A)
such that ma = u; + -+ + Uy,.

The main purpose of this paper is to prove the Hyers-Ulam stabil-
ity of the functional equation (1.1) in Banach modules over a unital
C*-algebra for a special case, and to prove the Hyers-Ulam stability of
algebra homomorphisms in Banach algebras.

2. Partitioned functional equations

In this section, we solve the conjecture for a special case.

THEOREM 2.1. Let V and W be vector spaces. A mapping f :V —
W with f(0) = 0 satisfies the functional equation

(4p)"~t
Ty + -+ Tgp)n Tapi—dpt1 + - 1 Tapi
4p)" f( +oAp Y f )
( (4p)" ) P ( 4p

(4p)"

21) = 2y
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for all x1 = Tpyni1, T2, , Tupn € V if and only if the mapping f :
V' — W satistfies the additive Cauchy equation f(x +y) = f(x) + f(y)
forall z,y € V.

Proof. Assume that a mapping f : V' — W satisfies (2.1). Put z4;_3 =
T, Tyo =1, Tgi—1 =2z and 243 = —z in (2.1) for all 4 = 1,--- , p(4p)"~L.
Then

()" ) + (Y
22) = 234p) pf (D) + )+ pf ()

for all z,y,z € V. Put x =y and z = = in (2.2). Then we get
X _
2 (4p)"f(3) = 4p (4p)"" f()
for all x € V. So we have
1 1
(2.3 f(52) = 2 /()

for all z € V. Put z =0 in (2.2). By (2.3), we get

2p (4p)" ' f(x +y) = (4p)"H(pf (x 4+ y) + pf(y) + pf(2))

for all z;y € V. So the mapping f : V — W satisfies the additive
Cauchy equation f(x +y) = f(x) + f(y) for all x,y € V.
The converse is obvious. O

THEOREM 2.2. Let V and W be vector spaces. A mapping f :V —
W with f(0) = 0 satisfies the functional equation

(4p)n71
Ty + e+ Tgp)n Typi—dp1 + 0+ Tapi
4p)" f + 8p f
(P > Fra—
@y T, +Tip1+2
i i+1 i+2
(24) = 3y gt
i=1
for all w1 = T(4pyni1, To = Tapynta, T3, -+ , Tapyn € V if and only if the

mapping [ : V — W satisfies the additive Cauchy equation f(x +y) =
fx)+ f(y) for all x,y € V.
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Proof. Assume that a mapping f : V' — W satisfies (2.4). Put x4;_3 =
Ty =z and Ty o = x4 =y in (2.4) for alli =1,--- , p(4p)"~'. Then

25 @)Y ¢ o2 @)Y

2
= 6p (4p)"" <f<2"“”3+ Ty f(ER)

for all x,y € V. Replacing x and y by 2z and —z in (2.5), respectively,
we get

x—i—y

3 (4p)"F(5) = 6p (4p)" " f(2)
for all x € V. So

1 1
(26) F5o) = £ F(a)
forallz € V. Put x4 3 =, x4; 2 =y, 1451 = 2z and x4 = —2 in (2.4)

foralli=1,---,p(4p)"~!. Then

() f () 2 ) (Y = 3<4p>"1<pf<%>+pf<§>
x+y—z

(27) + pf(E) ()
for all z,y,z € V. Put =y and z = z in (2.7). Then we get
3 (4p)"f(5) = 3p (4p)" " (f() + 3f(3))
for all z € V. By (2.6), we get
6p (4p)"" f(2) = 3p (4p)" ' (J(x) + 3/(3))
for all z € V. So we have
(28) fGo) = 5 (@)
for all z € V. Put z =0 in (2.7). By (2.6) and (2.8), we get

3p (4p)" ' flz+y) = (4p)" pf (@ +y) +pf(y) + pf(@) + pf(z+y))

for all x,y € V. So the mapping f : V — W satisfies the additive
Cauchy equation f(x +y) = f(x) + f(y) for all x,y € V.
The converse is obvious. O
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3. Stability of partitioned functional equations in Banach
modules over a (*-algebra associated with its unitary

group

We prove the Hyers-Ulam stability of the functional equation (1.1)
in Banach modules over a unital C*-algebra associated with its unitary
group for a special case.

THEOREM 3.1. Let f : 4B — AC be a mapping with f(0) = 0 for
which there exists a function ¢ : 4B“P)" — [0, 00) such that

(31) 6(1‘1, cet ,$(4p)n) :

o d ) (4p)"r
= Z<<4p)n7'>]<p(( d )]3717"' 7( d )]x(‘lp)") < o9,
7=0
IDuflor, o)l = l-uf( )
A Tapi—dp+1 T =+ Tapi
2 4 potet &
(32 DY Fra—
@ ux; + ur
i i+1
-2y f(%)” < (@1, Tapyn)
=1
for all w € U(A) and all 1 = ®@pyni1, %2, ,Tpyn € aB. Then there
exists a unique A-linear mapping T : 4B — 4C such that
1
3.3 flx)—=T(2)| < o(x, -,
(3.3) 1/ (z) = T(x)]] (4p)n( )
for all x € 4B.
Proof. Put w =1 € U(A). Let 1 = -+ = Tup» = v in (3.2). Then
we get
d 4dp)™r . "
1 ) ¢ o) — 204 )] < o )
for all x € 4B. So one can obtain that
d (4p)"r 1
T) — )| £ ——plz,- -,
1) = e )] € e )
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for all z € 4B. We prove by induction on j that

g FE ) = (i (o)
for all = € 4B. So we get
B4) 1)~ (e F(EE o)
< o ;<(4§)nr>%<<(4’2”7">% (D

for all x € 4B.
Let x be an element in 4B. For positive integers [ and m with [ > m,

d . Up)"r d 4 ) "\m
gy ) = () 2]
1« i dp)iry (4p)"r
= 4p)"j:m((4p)"r) A== (=),

which tends to zero as m — oo by (3.1). So {((4p‘§nr)jf(((4p3nr)jx)} is
a Cauchy sequence for all x € 4B. Since 2,C' is complete, the sequence
{((4p‘§nr)jf(((4pfr)jx)} converges for all z € 4B. We can define a map-
ping T': 4B — 4C by

(35 7o) = Jim (o5 A )
for all x € 4B.
By (3.1) and (3.5), we get
IDT (s )]
= i (D Y (B )
<t (o (D (B )
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for all @1, - ,xupn € aB. Hence D\T(xy, - ,xup») = 0 for all
Ti, 0, Tpyn € AB. Putxy=---= T(gpyn = T in D1T<ZL‘1, s ,.’B(4p)n) =
0. Then

d_. (4p)™r n n
T 1 (4 T(w) — 2049 T(w) = 0
for all x € 4B. So
4p)" 4p)"
()~ Gy
for all x € 4B. Since
d ., TTL+ -+ TTapn d,, (4p)"r(z1 + - + Tap)n)
-1 ) = -1 ; )
r d T (4p)nd
d (4p)" - .
_ d(4p) rpt +nl“<4p> )
r d (4p)
Tyt T Ty
= 4p)"T
Ty
for all wy,--- , xupn € 4B,
x1—|—+x(4)n (ap) ! Tapi—dptr1 + *°* + Tap;
4p n P + 4p T pi—4p+ Pt
(4T (P > - )
(4p)™
xX; + Tit+1
- 9 Z T(T+>
i=1
for all xy = x@p)yni1, T2, , Tapy» € aB. By Theorem 2.1, T' is additive.

Moreover, by passing to the limit in (3.4) as j — 0o, we get the inequality

(3.3).

Now let L : 4B — 4C be another additive mapping satisfying

1
(4p)

1f () = L2)|| < =50l @)
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for all x € 4B.

T - Ll = (e Iy - L)
< (T o) = (i)
+ (g o) - L)
< o A (),

which tends to zero as j — oo by (3.1). Thus T(z) = L(x) for all
x € oB. This proves the uniqueness of T'.
By the assumption, for each u € U(A),

d j (4p)™r j (4p)™r j
(o IDuf (O e (B )
< (ra o (B Ty (DT

for all z € 4B, and

d (4p)"r; (4p)"r
(V1P (B ) 0

as j — oo forall z € 4B. So

for all w € U(A) and all x € 4B. Hence

d 4dp)"
D, T(x,--- ,a:):—uT(( Z) T
r

for all w € U(A) and all x € 4B. So
ul(xz) =T (ux)

for all u € U(A) and all x € 4B.
Now let a € A (a # 0) and M an integer greater than 4|a|. Then
la| 1 2 1

1
= o<+ =-<1-Z=_.
VAT 373

x)+ (4p)"uT (z) — 2(4p)"T(uzx) = 0

|
M
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By Lemma 1.1, there exist three elements uq, us, us € U(A) such that
3L =y +us +uz. And T(z) = T(3- 32) = 3T (5z) for all z € 4B. So

T(3z) = :T(x) for all # € 4B. Thus

M _a 1 _a M a
- 3=V =M -T(=-3—z) = —T(3—
T(ax) T( 3 BMJC) M T(3 BMx) 3 (3Ma:)

= —T(nx + usw + ugz) = —(T(wyx) + T(upz) 4 T(uzz))

3
= %(Ul + U2 + Ug)T(l‘) =
= al(x)

-3—T(x)

w|§w|§

a
M
for all x € 4B. Obviously, T'(0x) = 07'(x) for all z € 4B. Hence

T(ax + by) = T(ax) + T(by) = aT(z) + T (y)

for all a,b € A and all z;,y € 4B. So the unique additive mapping
T : sB — 4C is an A-linear mapping, as desired. O]

Applying the unital C*-algebra C to Theorem 3.1, one can obtain the
following.

COROLLARY 3.2. Let E; and FE, be complex Banach spaces with
norms || - || and || - ||, respectively. Let f : Ey — FE3 be a mapping with

f(0) = 0 for which there exists a function ¢ : EW" [0,00) such that

PlE1,- s Tapn) -

= d ., (4p)"r. 4p)"r
- Z((le)n’l“)](p((( ]zl) r)]xlu"' 7(( lzi) r)jx(4p)n>
=0
< 00,
| Daf (21, - - 7x(4p)")H < p(wy,- - 7x(4p)")

for all A € T' := {\ € C| |\ = 1} and all 2y, -+ , 2y € Ey. Then
there exists a unique C-linear mapping T : 'y — FE5 such that

@) = T@)] € Zla - )

for all x € E;.
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THEOREM 3.3. Let f : 4B — 4C be a mapping with f(0) = 0 for
which there exists a function ¢ : 4 B4)" — [0, 00) such that

(36) 6($1, R ,Z’(4p)n) .

(4p)~1

Ty+ -t $(4p) Tapi—dp+1 T =+ Tap;
= [[(4p)"uf ) +4p uf( )

(4p)"

urmZ + urxy;
(3.7) — Z f TH)H < (@, Tapyn)

for all w € U(A) and all 1 = x@pyni1, %2, ,Tpyn € aB. Then there
exists a unique A-linear mapping T : 4B — 4C' such that

(3.8) [/ () = T(2)|| <

for all x € 4B.
Proof. Put w =1 € U(A). Let &1 = -+ = 2up» = x in (3.7). Then
we get

WP ) < o )

[(4p)" f () + (4p)" f (x) —

,
for all x € 4B. So one can obtain that
1
2(4p)"

for all z € 4B. We prove by induction on j that

15) = o fCrol < 5ol o)

d. ..  2r. . d

GV F(Cr V) = (5P ()]
1 d j 2r j 2r ;
< 2(4p)”(5) %0((3) Ty ’(E) z)
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for all z € 4B. So we get

d. ..  2r

39) @) - PGV

for all x € 4B.
Let x be an element in 4B. For positive integers [ and m with [ > m,

d., . 2r, d. ... 2.
I (D) = (Gl
-1

1 d .. 2r . Ar .
N o ((EiNi e o (21N
which tends to zero as m — oo by (3.6). So {(£)’f((%)7z)} is a Cauchy
sequence for all x € 4B. Since the space 4C' is complete, the sequence
{(L) f((%)/z)} converges for all z € 4B. We can define a mapping
T: 4B — AC by

IN

] =m

3.10 T =1 J
(3.10) () jggo(%) (e ) z)
for all x € 4B.
By (3.6) and (3.10), we get
d 2r 2r .
IDT (sl = lim (Y ID (Y s () )
. d .. 2r . 2r .
<l (o V(G Ve, () = 0
for all @1, - ,2upn € aB. Hence Di\T(xy, - ,x@pn) = 0 for all
Ty, Tupn € aB. Put x; = = Tapyn = @ in DT (21, , Tpyn) =
0. Then (4p)
n n dp)*d__ 2r
(4p)"T(z) + (4p)"T(2) — = —T(—2) =0
for all z € 4B. So
2 2
T(é’x) - %T(x)
for all x € 4B. Since
d rT; + TTir1 d 27’(1’1 + $i+1) d2r x; + Tit1 x; + Tit1
Cp i ity CpdA T Vivt)y @2 p T T Tivly oL T Lidd
r ( d ) r ( 2d ) r d ( 2 ) ( 2

)



44 D. Boo, H. A. Kenary and C. Park

for all z;,x;11 € 4B,

(4p)n—1

L1+ Tapyn l‘z + A Ty
(4p)"T( R (4p) )+ dp Z 4pi—dp+1 " 4p)

(4p)™

_ Z T( Z; +2$z+1)
=1

for all x1 = @ @p)yny1, T2, -, Tapy» € aB. By Theorem 2.1, T' is additive.
Moreover, by passing to the limit in (3.9) as j — 0o, we get the inequality
(3.8).

The rest of the proof is the same as the proof of Theorem 3.1. O

THEOREM 3.4. Let f : 4B — 4C be a mapping with f(0) = 0 for
which there exists a function ¢ : 4B“P)" — [0, 00) such that

(3.11) @/(Il,--- (4p) ) .

1 1
_22] __*7317 $2>2j$37“' )

1 1 1
_E‘T(“P) —4p+1) oF L(4p)n—dp+25 """ 751‘(4;;)”) < 00,

T1t e Ty

D, R n = 4p)"
[ Duf (21 (apyn) | | (4p)"uf( @) )
(" T + o T
3.12 4 4pi—4p+1 4pi
(312) +Hp 3 uf o a—
(4p)™
uaz:Z + Ur;q
g Y ()
=1
S (p(xla Tt 7x(4p)")
for all u € U(A) and all ©1 = T@apyni1, 22, ,Tapyn € aB. Then there
exists a unique A-linear mapping T : 4B — 4C such that
1
3.13 flx)—T(x)| < o(x, -,z
(3.13) 1f(z) = T()|| <4p)n( )

for all x € 4B.
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Proof. Put u=1€ U(A). Let x4y 3=z and x4 9 = x4 1 = T4 =y
n (3.12) forall i = 1,--- , p(4p)"~'. Then we get
n e T+ 3y n o T+ 3y
1(4p)" f (=) + )" f(——)

—p (4p)" () — p (4 (w)

(314) §90($7yy?/aya"' ax7yay7y)

for all x,y € 4B. Replacing x and y by —z and z in (3.14), respectively,
we get

n m n
for all x € 4B. So one can obtain that
T 1
fﬁU _2f_ S p\—x,r,r, ¢, ,—T,T,T,T
1) = 2 () < e )
for all x € 4B. We prove by induction on j that
1 . 1
] _ j+1
[2f(e) — 2 (gl
27 1 1 1 1 1 1 1 1
< o(——=x, =2, —r, —T, + ,——IT, —T, —T, —)
(4p)™ 20 721 72 2 20 721 72 2
for all x € 4B. So we get
1 e 1 1 1
9 f(— < gm e
10 = 27l S D02l gt et s
1 1 1 1
(3.15) - —= — x)

om ™ gm " gm " gm
for all x € 4B.
Let z be an element in 4B. For positive integers [ and m with [ > m,

1 1
12 (552) = 2" f ()|

1 - 1 1 1 1 1 1 1 1
E Jo(——p. — . — e — v e e . —— i — — . —
j=m

which tends to zero as m — oo by (3.11). So {27 f(552)} is a Cauchy
sequence for all z € 4B. Since 4C is complete, the sequence {27 f(552)}

—~



46 D. Boo, H. A. Kenary and C. Park

converges for all z € 4B. We can define a mapping T : 4B — AC by

(3.16) T(x) = lim 2Jf(2i]x)

J—00

for all x € 4B.
By (3.11) and (3.16), we get

IDiT (1, s wapyn)|| = jli_g)lo 2 ||D1f(§951, AR Eff(zlp)")”
< lim 2 ! L =0
= ]gglo ‘P(gﬁh ce ,§$(4p)n) =
for all @1, - ,xupn € aB. Hence DiT(xy, - ,xupn) = 0 for all

Ty, ,Tupn € aB. By Theorem 2.1, T is additive. Moreover, by
passing to the limit in (3.15) as j — oo, we get the inequality (3.13).
The rest of the proof is the same as the proof of Theorem 3.1. O

THEOREM 3.5. Let f : 4B — 4C be a mapping with f(0) = 0 for
which there exists a function ¢ : 4B4)" — [0, 00) such that

(T, ,95(4;;)”) :
A dp)r (4p)"r
- j Ty v J W) <
R E S TS U tE TR IR o)
r d P — “ 4p
@ UL + ULy + UL
i i+l i+2
-3 > [ g ) < plans- -z apn)
i=1
for allu € U(A) and all 1 = @(gpyni1, To = T(apynt2, T3, , Tapyn € 4B.
Then there exists a unique A-linear mapping T : 4B — AC' such that
1
If(z) = T(2)|| < oz, -, x)
(@) = T < 75

for all x € 4B.

Proof. The proof is similar to the proof of Theorem 3.1. O]
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THEOREM 3.6. Let f : 4B — 4C be a mapping with f(0) = 0 for
which there exists a function ¢ : 4 B4)" — [0, 00) such that

~ = d.. 3r 3r. .
90<x1a te 7x(4p)") = Z(—)Jgp(( d ) T, 7(—)]$(4p)n) < 00,

— " 3r d
7=0
Ty o+ Tpn AN 374 dpt1 -+ 24
1(4p)"uf( =)+ 8p uf (= )
(4p)” 2 4p
d Gr ruxl + ruz;1 + Tux;0
—— D1 y M < o, )
=1
for allu € U(A) and all £1 = T(pyni1, T2 = T(apynta, T3, -+ , Tapyn € aB.
Then there exists a unique A-linear mapping T : 4B — AoC' such that
1
flx)=T(z)| < oz, -, x
1f(z) = T(z)]| 3 {4p) ( )

for all x € 4B.
Proof. The proof is similar to the proofs of Theorems 3.1 and 3.3. [J

THEOREM 3.7. Let f : 4B — 4C be a mapping with f(0) = 0 for
which there exists a function ¢ : 4 B4P)" — [0, 00) such that

(3.17) 95(%,“' T (4p)n )1

1 1
24] __xla 1'2, 4j$37"’ )
2 1 1

_E:L‘(4p)"*4p+17 Z$(4p)”f4p+27 T 7E:L‘(4p)") < o0,

Tyt g

Duf(z1, - xupn)| = |(4p)"

[ D f (21 (apyn) | 1(4p)"uf( @) )
(4p)nt x I
3.18 8 4pi—4p+1 4pi
(3.18) 8 3 ufl " )

(4p) UL; + uUr; 1 + ux;

) 1+1 142
- 3 ) )

=1
< (@, Tapn)
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for all w € U(A) and all ©1 = 2 (apyn 11, T2 = T(apyr42, T3, , T(apyn € a 5.
Then there exists a unique A-linear mapping T : 4B — oC such that
1
3.19 flo)=T()| < —F—¢(z, - ,x
(3.19) 1f(z) = T(z)]| Sy ()T ( )

for all x € 4B.

Proof. Put u=1€ U(A). Let x4 3 =z and Ty o = 451 = Ty = Y
n (3.18) for all i = 1,--- , p(4p)"~!. Then we get

() 2 gy (R
— 0 () — 3p (4 ()]
(320) < So(xvy7yaya"' ,l',y,y,y)

for all z,y € 4B. Replacing x and y by —2x and z in (3.20), respectively,
we get

I3 (4p)"F(3)

for all x € 4B. So one can obtain that

_3p (4p>7l—1f(x)|| S 90(_2‘@71'7'%’1'7“' ,—2ZE,CC,ZE,I')

||f(l‘) — 4‘]8(%)” S W@<—2I7ZE,{L‘7Q}7 “ee 7—21'71',1‘71’)
for all z € 4B. We prove by induction on j that
| 1
J Jj+1
4 (g5) — 47 7 ()
< 47 2 1 1 1 2 1 1 1
S e e st e Y
for all x € 4B. So we get
7)) ~ #f(5nl < Z e
v = 3p (dp)n1 T g g g
2 1 1 1
(3.21) ——T,—T,—T, —)

Am™7 gm T AgmT gm
for all x € 4B.
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Let x be an element in 4B. For positive integers [ and m with [ > m,

1 1
l m
4 £ () = 47 ()
-1
1 , 2 1 1 1 2 1 1 1
- E I (—m—p —p —p — eee o

Jj=m

which tends to zero as m — oo by (3.17). So {4/ f(5;x)} is a Cauchy
sequence for all x € 4B. Since 4C' is complete, the sequence {47 f (ﬁx)}
converges for all z € 4B. We can define a mapping T : 4B — AC by

(3.22) T(z) = lim 49 f(%q;)

for all x € 4B.
By (3.17) and (3.22), we get

. : 1 1
1D\ T (1, s wpy)ll = lim A[Dif (G2, G|
< lim 4jg0(ix e ix n) =0
= S 4 1, ’4] (4p)
for all @1, - ,2upn € aB. Hence DiT(xy, - ,x@pn) = 0 for all

Ty, ,Tupn € aB. By Theorem 2.2, T is additive. Moreover, by
passing to the limit in (3.21) as j — oo, we get the inequality (3.19).
The rest of the proof is the same as the proof of Theorem 3.1. m

4. Stability of partitioned functional equations in Banach
algebras and approximate algebra homomorphisms

In this section, let A and B be Banach algebras with norms || - || and
|| - ||, respectively.

D.G. Bourgin [2] proved the stability of ring homomorphisms between
Banach algebras. In [1], R. Badora generalized the Bourgin’s result.

We prove the Hyers-Ulam stability of algebra homomorphisms in Ba-
nach algebras associated with the functional equation (1.1).

THEOREM 4.1. Let A and B be complex Banach algebras. Let f :
A — B be a mapping with f(0) = 0 for which there exists a function
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Y Ax A—[0,00) such that

@) )= Y ) < oo,

= 4p)rr
(4'2) ||D>\f(l’1,"' >$(4p)”)|| < So(x17"' v$(4p)”)>
(4.3) 1f(z-y) = @) fWI < ¢(,y)

for all X € T" and all x,y, 21, , Ty € A, where ¢ and D, f satisty
the conditions given in the statement of Theorem 3.1. Then there exists
a unique algebra homomorphism T : A — B satisfying (3.3).

Proof. Under the assumption (4.2), in Corollary 3.2, we showed that
there exists a unique C-linear mapping 7' : A — B satisfying (3.3). The
C-linear mapping T': A — B was given by

P (L)

Tlw) = i (4p)"r

for all x € A. Let
R(z,y) = f(z-y) — f(x)f(y)
for all z,y € A. By (4.1), we get

R =0
for all x,y € A. So
7o) = (i e )
@y =t (o)
=l (PG ) )+ R )
= T(x)f(y)
for all z,y € A. Thus
(@) () = 1P py) = (B
= () = (B i)




Functional equations in Banach modules 51

for all z,y € A. Hence

d_ e dp)"ry o
(4p)”7“) ==Yy =T)f(y)

for all z,y € A. Taking the limit in (4.5) as j — oo, we obtain

T(z)T(y) = T(x)[f(y)
for all z,y € A. Therefore,

T(x-y) =T()T(y)
for all x,y € A. So T : A — B is an algebra homomorphism. m

(4.5) T(x)(

THEOREM 4.2. Let A and B be complex Banach x-algebras. Let
f: A — B be amapping with f(0) = 0 for which there exists a function
P Ax A—[0,00) satisfying (4.1) and (4.3) such that

|’D/\f($17"' 7x(4p)")H < @(xla"' ,«T(4p)">,
1f(z®) = f@) < oz, )
for all \ € T' and all x, 1, -+ , xup» € A, where ¢ and D, f satisfy the

conditions given in the statement of Theorem 3.1. Then there exists a
unique *-algebra homomorphism T : A — B satisfying (3.3).

Proof. By the same reasoning as the proof of Theorem 4.1, there exists
a unique C-linear mapping 7" : A — B satisfying (3.3).
Now

d i BTG (4p)"r s L.
(g I P = 1y
d ;. p)r; (4p)"r .,
< (el ()
for all x € A. Thus
d (4p)"r Gk (4p)"r [y
(I = (B pay =0
as j — oo for all z € A. Hence
* o lm 7 (4p>nr jl'*
7)) = Jim (e H(E )
— lim d (4p)"r IV = T(r)*
— Jim (A ey = TG

for all z € A.
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The rest of the proof is the same as the proof of Theorem 4.1. O

Similarly, for the other cases given in Section 3, one can obtain similar
results to the theorems given above.
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