• Title/Summary/Keyword: approximate frequency

Search Result 287, Processing Time 0.022 seconds

Fundamental Natural Frequency Analysis of Stepped Cantilever Beams by Equivalent Beam Transformation Technique (계단형 외팔보의 등가보 변환에 의한 기본고유진동수 해석)

  • Moon, Sang-Pil;Hong, Soon-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.401-410
    • /
    • 2008
  • The natural frequency of a beam plays an important role in not only vibration analysis but also understanding its dynamic characteristics. It is complicated to analyse the natural frequency of a stepped beam with discontinuously varying section. Approximate analysis methods such as Rayleigh-Ritz method, FEM, etc. are frequently used for the vibration analysis of stepped beams. In such a case, accuracy of these methods depends upon the number of partitioned elements, the number of the iterations in calculation and the assumed mode shape. This study presents an approximate analysis method for the fundamental natural frequency analysis of stepped cantilever beam, using equivalent beam transformation technique. Validity and usefulness are verified by comparing the proposed method with FEM for several example problems.

Adaptive Position Controller Design of Electro-hydraulic Actuator Using Approximate Model Inversion (근사적 모델 역변환을 활용한 전기-유압 액추에이터의 적응 위치 제어기 설계)

  • Lee, Kyeong Ha;Baek, Seung Guk;Koo, Ja Choon
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.2
    • /
    • pp.92-99
    • /
    • 2016
  • An electro-hydraulic actuator (EHA) is widely used in industrial motion systems and the increasing bandwidth of EHA position control is important issue. The model-inverse feedforward controller is known to extend the bandwidth of system. When the system has non-minimum phase (NMP) zeros, direct model inversion makes system unstable. To overcome this problem, an approximate model-inverse method is used. A representative approximate model inversion method is zero phase error tracking control (ZPETC). However, if zeros locate right half plane of z-plane, the approximate inverse model amplifies the high-frequency response. In this paper, to solve the problem of ZPETC, an adaptive model-inverse control is proposed. The adaptive algorithm updates feedforward term in real-time. The effectiveness of the proposed adaptive model-inverse position control strategy is verified by comparison with typical proportional-integral (PI) control and feedforward control by experiments. As a result, the proposed adaptive controller extends the bandwidth of EHA position control.

Analytical Approximation Algorithm for the Inverse of the Power of the Incomplete Gamma Function Based on Extreme Value Theory

  • Wu, Shanshan;Hu, Guobing;Yang, Li;Gu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4567-4583
    • /
    • 2021
  • This study proposes an analytical approximation algorithm based on extreme value theory (EVT) for the inverse of the power of the incomplete Gamma function. First, the Gumbel function is used to approximate the power of the incomplete Gamma function, and the corresponding inverse problem is transformed into the inversion of an exponential function. Then, using the tail equivalence theorem, the normalized coefficient of the general Weibull distribution function is employed to replace the normalized coefficient of the random variable following a Gamma distribution, and the approximate closed form solution is obtained. The effects of equation parameters on the algorithm performance are evaluated through simulation analysis under various conditions, and the performance of this algorithm is compared to those of the Newton iterative algorithm and other existing approximate analytical algorithms. The proposed algorithm exhibits good approximation performance under appropriate parameter settings. Finally, the performance of this method is evaluated by calculating the thresholds of space-time block coding and space-frequency block coding pattern recognition in multiple-input and multiple-output orthogonal frequency division multiplexing. The analytical approximation method can be applied to other related situations involving the maximum statistics of independent and identically distributed random variables following Gamma distributions.

On the Error Bound of the Approximate Solution of a Nonclassically Damped Linear System under Periodic Excitations

  • Hwang, Jai-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4E
    • /
    • pp.45-52
    • /
    • 1996
  • One common procedure in the approximate solution of a nonclassically damped linear system is to neglect the off-diagonal elements of the normalized damping matrix. A tight error bound, which can be computed with relative ease, is given for this method of solution. The role that modal coupling plays in the control of error is clarified. If the normalized damping matrix is strongly diagonally dominant, it is shown that adequate frequency separation is not necessary to ensure small errors.

  • PDF

Natural Frequency of 2-Dimensional Cylinders in Heaving; Frequency-Domain Analysis (상하동요하는 2차원 주상체의 고유진동수; 주파수 영역 해석)

  • Song, Je-Ha;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • Following the previous works on the natural frequency of heaving circular cylinder, i.e. Lee and Lee (2013) and Kim and Lee (2013), an investigation of the same spirit on the 2-dimensional cylinder of Lewis form has been conducted. As before, the natural frequency is defined as that corresponding to the local maximum of the MCFR (Modulus of Complex Frequency Response), which is given by the equation of motion in the frequency domain analysis. Hydrodynamic coefficients were found by using the Ursell-Tasai method, and numerical results for them were obtained up to much higher frequencies than before, for which the method was known as numerically unstable in the past. For a wide range of H, the beam-draft ratio, and ${\sigma}$, the sectional area coefficient, including their practical ranges for a ship, results for the natural frequency were computed and presented in this work. Two approximate values for the natural frequency, one proposed by Lee (2008) and another one by the damped harmonic oscillator, were also compared with the current results, and for most cases it was observed that the current result is between the two values. Our numerical results showed that the values of the local maximum of MCFR as well as the natural frequencye increase as ${\sigma}$ increases while H decreases. At present, extension of the present finding to the 3-dimensional ship via the approximate theory like the strip method looks promising.

Approximate Equivalent-Circuit Modeling and Analysis of Type-II Resonant Immittance Converters

  • Borage, Mangesh;Nagesh, K.V.;Bhatia, M.S.;Tiwari, Sunil
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.317-325
    • /
    • 2012
  • Resonant immittance converter (RIC) topologies can transform a current source into a voltage source (Type-I RICs) and vice versa (Type-II RICs), thereby making them suitable for many power electronics applications. RICs are operated at a fixed frequency where the resonant immittance network (RIN) exhibits immittance conversion characteristics. It is observed that the low-frequency response of Type-II RINs is relatively flat and that the state variables associated with Type-II RINs affect the response only at the high frequencies in the vicinity of the switching frequency. The overall response of a Type-II RIC is thus dominated by the filter response, which is particularly important for the controller design. Therefore, an approximate equivalent circuit model and a small-signal model of Type-II RICs are proposed in this paper, neglecting the high-frequency response of Type-II RINs. While the proposed models greatly simplify and speed-up the analysis, it adequately predicts the open-loop transient and small-signal ac behavior of Type-II RICs. The validity of the proposed models is confirmed by comparisons of their results with those obtained from a cycle-by-cycle simulation and with an experimental prototype.

Approximate solution for a building installed with a friction damper : revisited and new result (마찰감쇠기가 설치된 건물 응답의 근사해 : 재 고찰 및 새로운 결과)

  • Min, Kyung-Won;Seong, Ji-Young;Lee, Sung-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.850-854
    • /
    • 2009
  • Approximate analysis for a building installed with a friction damper is revisited to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor (DMF) for the building with combined viscous and friction damping. It is found out that DMF is dependent on friction force ratio and resonance frequency. Linear transfer function from input external force to output building displacement is obtained by simplifying DMF equation. Root mean square of building displacement is derived under earthquake-like random excitation. Finally, design of friction damper is proposed by processing target control ratio, damping ratio factor, and friction force in sequence.

  • PDF

Damping Characteristics of a Microcantilever for Radio Frequency-microelectromechanical Switches (RF-MEMS 스위치용 마이크로 외팔보의 감쇠특성)

  • Lee, Jin-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.553-561
    • /
    • 2011
  • A theoretical approach is carried out to predict the quality factors of flexible modes of a microcantilever on a squeeze-film. The frequency response function of an inertially-excited microcantilever beam is derived using an Euler-Bernoulli beam theory. The external force due to squeeze-film phenomenon is developed from the Reynolds equation. Slip boundary conditions are employed at the interfaces between the fluid and the structure to consider the gas rarefaction effect, and pressure boundary condition at both ends of fluid analysis region is enhanced to increase the exactness of predicted quality factors. To the end, an approximate equation is derived for the first bending mode of the microcantilever. Using the approximate equation, the quality factors of the second and third bending modes are calculated and compared with experimental results of previously reported work. The comparison shows the feasibility of the current approach.

Simple Contending-type MAC Scheme for Wireless Passive Sensor Networks: Throughput Analysis and Optimization

  • Park, Jin Kyung;Seo, Heewon;Choi, Cheon Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.299-304
    • /
    • 2017
  • A wireless passive sensor network is a network consisting of sink nodes, sensor nodes, and radio frequency (RF) sources, where an RF source transfers energy to sensor nodes by radiating RF waves, and a sensor node transmits data by consuming the received energy. Against theoretical expectations, a wireless passive sensor network suffers from many practical difficulties: scarcity of energy, non-simultaneity of energy reception and data transmission, and inefficiency in allocating time resources. Perceiving such difficulties, we propose a simple contending-type medium access control (MAC) scheme for many sensor nodes to deliver packets to a sink node. Then, we derive an approximate expression for the network-wide throughput attained by the proposed MAC scheme. Also, we present an approximate expression for the optimal partition, which maximizes the saturated network-wide throughput. Numerical examples confirm that each of the approximate expressions yields a highly precise value for network-wide throughput and finds an exactly optimal partition.

Exact and approximate solutions for free vibrations of continuous partial-interaction composite beams

  • Sun, Kai Q.;Zhang, Nan;Zhu, Qun X.;Liu, Xiao
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.531-543
    • /
    • 2022
  • An exact dynamic analytical method for free vibrations of continuous partial-interaction composite beams is proposed based on the Timoshenko beam theory. The main advantage of this method is that the independent shear deformations and rotary inertia of sub-beams are considered, which is more in line with the reality. Therefore, the accuracy of eigenfrequencies obtained by this method is significantly improved, especially for higher order modes, compared to the existing methods where the rotary angles of both sub-beams are assumed to be equal irrespective of the differences in the shear stiffness of each sub-beam. Furthermore, the solutions obtained by the proposed method are exact owing to no introduction of approximated displacement and force fields in the derivation. In addition, an exact analytical solution for the case of simply supported is obtained. Based on this, an approximate expression for the fundamental frequency of continuous partial-interaction composite beams is also proposed, which is useful for practical engineering applications. Finally, the practicability and effectiveness of the proposed method and the approximate expression are explored using numerical and experimental examples; The influence factors including the interfacial interaction, shear modulus ratio, span-to-depth ratio, and side-to-main span length ratio on the eigenfrequencies are presented and discussed in detail.