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On the Error Bound of the Approximate Solution of a Nonclassically
Damped Linear System under Periodic Excitations
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Abstract

One common procedurc in the spproximate solution of a nonclassically damped linear system is to neglect the off-diag-

onal elements of the normalized damping matrix. A tight error bound, which can be computed with relative case, is given

for this mcthod of solution. The role that modal coupling plays in the control of error is clarified. Il the normalized damp-

ing matrix is strongly diagonalty dominant, it is shown that adequate frequency separation is nol nccessary to ensure small

Srrors,

. Introduction

A lincar dynamic system is sard to have classical por-
mal modes il the system possesses a complete set of real,
orthonormal eigenvectors. in gencral, an undamped dy-
namijc system always possesses ¢ -:sical normal modes.
When dissipative forces are present, lhe system may or
may not possess classical normal modes. Il it does, the
system is said Lo be classically damped. Caughey and
O’'Kelly(1965) have establishcd a necessary and sufficient
conditton for the existence of classical normal modes in a
damped lincar system, If the criterion of Caughey and
O’Kellly is not met, then nonclassical damping s said to
exist. In realily, nonclassical damping comes from drastic
variations of encrgy absorption rates of the materials in
different parts of a structure. Typical examples of non-
classically damped systems are a nuclear reactor contain-
ment vessel founded on soft sotl subjected 1o carthquake
motion(Clough and Mojtahedi, 1976}, and a base-isolated
structure i the same environment(Tsai and Kelly.1988).

When dissipative forces are nonclassical, il is generafly
difficolt (0 analyze the syslem dynamics, owing (0 the
complex nature of eigensolutions. Foss(1958) and Vigner-
on(1986) proposed a state space approach which takes
into account the orthogonalily relatzons belween the com-
plex cigenvectors of a nonclassically damped system. The
key lo the utility of the cigenselutions is, of course, or-
thogonalily, which allows decoupling of the gaverning

equalions, One disadvantage of such exact methods is
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that they require significanl numerical elfort to deternting
the cigensolutions. The eflort required is evidently intensi-
fied by the fuct that the eigensolulions of a nonclassically
damped system are complex. From the analysts’ view-
potnt, another disadvantage ts Lhe lack ol physical insight
afforded by methods which are intrinsically numerical in
nature. Several authors have studied nonclassically dam-
ped linear systems by approximate techniques. For in-
stance, Cronin{[976)} obtained an approximatc solution
for a nonclassically damped system under harmonic exci-
tation by perturbation lechmigues. Chung and Lee(1986)
applied perturbalion techniques to oblain the cigensolut-
ions of damped syslems wilh weakly nonclassical damp-
ing. Prater and Singh{1986), and Nair and Singh(]986)
developed several tndices to determine quantitatively the
cxlent of nonclassical damping in discrete vibratory sys-
tems. Nicholson(1987) gave upper bounds for the re-
sponse of nonclassically damped systems under impulsive
loads and slep loads.

In analyzing a nonclassically damped system, one com-
mon approximation is 10 neglect (hose damping terms
which are nonclassical, and retain the classicat ones. This
approach is termed the mcthod of approximate decoup-
ling. For large-scale systems, the computational effort at
adopting approximate decoupling is al dcast an order of
magnitude smatler than the method of complex modes.
The solution of the decoupled cquations would be close
o the exact solution of the coupled cquations if the non-
classical damping lerms are sufficiently small. A dis-
cusston on this lopic is given, for example, by Mewrovitch
(1967}, Thomson et at.(1974), and Cronin(1976). Approx:-
male decoupling of a damped lincar system is oflen con-

venicnt and practical. An aitempt 1o evaluale the extent
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of approximation, introduced by neglecting the nonclass-
ical damping lerm, has recently been reporied by Shahruz
and Ma(198R). It is cluimed thal the crror bounds obta-
ined in thesr paper are the tightesl in a cerfain functional
form, il the external excitation is arbitrary. However,
computational effort 1o find the crror bounds is quile
involved.

The purpose of this paper is to denve a new error
bound which can be oblained with less computational cf-
fort, as well as 1o highlight the modal coupling duc 1o Lthe
nonclussical damping terms. 1t has been found that the
new crror bound is generally sharper han the previous
ones given by Shahruz and Ma(1988), bul the derivation
ol the new error bound requires an additional assumplion
that the external excilalion be periodic. The organization
ol the paper is as [ollows. In section 2, an expression for
the error bound that involves less computational cffort is
derived. The error bound due 10 approximate decoupling
has an intimate rclationship with modal coupling because
of the nonclassical damping lerms. Modal coupling be-
tween any two adjacenl modes is highlighted in seclion 3.
A crilerion which ensurcs (hal approximate decoupling
docs nol cause excessive errors in the response is also
presented in this section. An example in section 4 illustr-
ates the theoretical devclopments pursued in this paper.
In section 5, a summary of findings is provided.

ll. Error bound for approximate decoupling

Consider the equation ol motion of a discrele or discr-

clized lincar system under external excitation

MY +Mx + Kx=f{1), x(0)=xo, x(0)=xq, {20,
(2.1)

where the mass matrix M, the damping matrix €, and the
stiffness malrix K are of order »nxXnithe displacement
vector x(f) and (he exlernal excitation f{#)} arc n-dimen-
stonal vectors, For passive systems, the maltrices M, C,
and K arc symmetiic and positive delinile. These assum-
plions are not arbitrary, but in fact have solid footing in
the theory of Lagrangian dynamics. Symmetsy of M
results naturally from the transformation from Cartesian
1o gencralized coordinales for a scleronomic syslem, and
the positive definilcness requirement is a properly of kin-
elic ¢nergy. Symmelry of K results from hinearization of
the polential energy lunction aboul an equilibrium point,
and the form of Rayleigh dissipation function ensures

symmeliry ol C{Rosenberg, 1977; Greeawood, 1977).
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Let U denote the # X2 modal matrix corresponding to
the system (2.1). The modal matrix is a nonsingular ma-
trix whose columns are the ¢igenvectors of the generatized

symmctric eigenvalue problem
At = w] Mu® 2.2)

where m!>0 and &%, i=1, -, n, arc (he cigenvalucs and
the corresponding cigenvectors, respectively. The modal
malrix is usoally osthonormalized according to U MU =
f, where U7 denotes the transpose of U, and { represents
the #X# identily matrix. Hence, UTKU =diaglw?, -, w?l)
=07 Tt is weli-known (hat by the lineac transformation
x(Y=t'qf), equation (2.1} can be wrtlen in the nor-

malized form

d+Cq +OPq=gW), g0) =UTMxy. g(0)=UTMx0, 120,
(2.3}

where C=U"CU, git)=UT f(8), g(t) is the n-dimensional
veclor of noruczh i coordinates. The symmelric matrix
C s cal v the e cnalized damping matox.

The normalize. »-.mping malrix C is not diagonal in
gencral. When C is not diagonal, the system (2.1) is said
to he nonclassically damped. If the damping matnx C is a
lincar combination of the mass and the stiffness matrices,
then € is diagonal; (his is a sufficient condition under
which C is diagonal, and was originally given by Lord
Rayleigh(1945). The necessary and sufficient condition un-
der which € is diagonal has been given by Canghey and
O'kelly(1965). When € is diagonal, system (2.3) is a set of
n decoupled second-order differenlial equalions, which
can be solved for g{1) convenically. Then, 1he solution of
(2.1) is obtained (rom x{¢) = Ug(f), for all £ = 0.

In the following, we shall use the L. norm of a vector,

defined by lx(p) =max |x:(p)| for any vector x(p) =[x,

(). . A7, where p is a parameter. Rewrile system

(2.3) as

§HCy +Ciq +Qrg=g(0), g0 =UTMxq. H{0)=U7 Mx,,

{20, (2.4)

where (g FCr=C Ca =diag(2& w1, -+, 2E4wy) is a matnix
composed ol the diagonal elements of €, and C, =&, ] is
4 symmelric # X2 matrix with zero diagonal elements.
Notice thal by the posilive dehinitencss of c, & >0 for all
=1, --. n. We now decouple sysiem (2.4) by neglecting

¢, , and denote the solution of the resulling equation by
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Gd1). Thus, we have
Go +Cuga+ P qe=glt), 120, (2.5)
with ¢a(0) = g0}, and §£0) =g{(0). Assume at this time that

the cxcitation is harmonic. Introduce a diagonal trans-

formation matrix D prescribed by

D=diag | —= l I

Vol-o*+i2bwmo \"w_,z,—_w;‘i:fz_é_,,w,.w

(2.6)

where o ts the excitation frequency and j = v’l t. Premulti-

tplying D to cquations (2.4) and (2.5), and using the idenl-

ily 7=DD7', we have

DIDD ' G +D{Cs +CIDD™'G + DO DD g = Dgll),
2.7}

DIDD ™ §o +DCa DD ‘Ga +DQ DD 'qu=Dglf). (2.8)

Subtracting equation (2.8) from (2.7), and denating the 2-
dimensional vector of error by ¢ =¢ —g,, we oblain,

DIDD 'é +DCaPD'é +DEDD le=—DC, 4. (2.9

where €(0) =€(0)=0. If we cxamine the frequency re-
sponse of equation {2.9), we have

(DD — DD +DjwCs DID ' e(fo) = - DjwC, g,
2.100)

Since NO2D—Dw*D +DjwCaD =1, equation (2.10) can

be cast in the form

e(jw) = Hql jm), (2.1
where H is a malrix given by

H= - joC,. (2.12)

To obtain an wpper bound for fle(aw)ll from equation
(2.11), we have

leGodl < I ]lgCe)ll, (2.13)
where [[H] is the L. induced norm of & dcfined by

I #il = max

i | A2ix | l (2.14)

Here. 4ix is the tk-th element of the matrix #. From cqu-

ation (2.£2), A can be expressed as

I o Jobu . (205)
Vi — @ 28w Vo] —w? F728w0w

The absolule value of Ax can be wrillen as

{higl = | fled | * el (2.16)

where

few) = —— — 0 . (2.17)

B 14
{((uf ~m? )+ 2{,‘0}.‘:1}}2 }
To cvaluate the supremum ol 4] over the set of exci-
tation frequencies, we Jirst write

sup | Riz) = sup | file)? [€ul. (2.18)

The supremum of | fiten| occurs at @ = w,, and

280,

sup | fdw)| = (2.19)

Substituting the formula (2.19} in expression {2.18), we

oblain

Il
sup el = ——— | {2.20)
p 28 e0;
which is valid lor any >0, =1, ..., #. It now follows
from equalion (2.14) that

" éu‘
I < max | T -,J—-‘—'~ (2.21)
oL e

If we define the row sum of the absolute values of the ofl-

diagonal elements of the normalized damping matrix € by

gz L 1éal, (2.22)

L]
A4

then expression (2.21) can be rewritten as

I1H| < max (2.23)

2w

Therelore, in the frequency domain, equation (2.13) im-

plies that

T,
2:{

fe(jo)l < max

— { e, (2.24)

Since o,/2& @, is constant, without loss of gencrality, x-

pression {2.24) can be rewritten in the form
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G

el < max

] (ol (2.25)

2% ;

This result states that if the row sum of the absolute val-
ues of the off-diagonal elements, a,, ol C is small com-
parcd to Lhe diagonal term 2Z;w, of C, then the error
commilted in approximate decouphng is small. This is
consislent with an eaclier result given by Shahruz and
Ma(1988), which shows that the crror is small if and i
only 6; /28w, <1 lor all 1=1, .., n. By cxtensive numeri-
cal calculations, i1 has been found (hal the new error
bound (2.25) is generally tighter than the previous error
bounds given by Shahruz and Mal 1988).

To continue wilh the further analysis of approximation
error, assume thal g, is sufficiently small for all i=1, ..,
n. Il a; is smal), ¢, should be close (o the aclual solution.
11 would be of intercst to oblain a neighborhood of ¢s in
which the actual solution ¢ lics. Since ¢ =¢ +¢., by the
triangle inequatity, gl < llell +lg.ll. From equation {2.13),

we oblain
. [Ffi]
—pen 194N ’
N L (¥4 . )
That is, ¢ lics in the m lg. O] neighborhood ol ¢..

It has been assumcd that § — [AH >0, which is always the

case il ¢;f2& o is small for all i=1, .., ». Deline

7 =max

i

ai
- (2.27
28 | )
Then, from equation (2.23), |Hll < 7. Since f{x)=x/(1 -
x) is an increasing Munction for 05 x <1, it follows from
cquation (2.26) that

e < ~"— Baud)l- (2.28)

Nolice that the above error bounds have been derived by
assuming harmonic excitation, but the results can be ex-
tended to any other type of periodic excitation by the
method of Fourier series. The utilily of the error hound
cxpressed by equations (2.27) and (2.28) lies in the rela-
live ease with which they can be compuled. The ersor
bound can be evaluated by merely examining the norma-
lized damping matrix ¢, before the process of approxi-
mate decoupling is perlormed. Moreover, the error bound
prescribed by expressions (2.27) and (2.28) is generally tigh-
ter than previous tight error bound given by Shahruz and
Ma(1988). This point will be illustrated by an example.
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ll. Modal coupling

In this section, modal coupling belween any two adjac-
enl modes is investigated. The aim s Lo derive a crilerion
(o cnsurc that approximale decoupling does nol causc ex-

cessive errors in the response. Rewrile cquation (2.7) as
DIDGr +DCa Din | DR Dap +DC, Dio=golt),  (3.1)
where gn=0 'q and gnit)= Dg(t). Since DQ* D~ Dw?D

+DjwCe D — 1. the frequency response matrix of equat-

ion (3.1) can be casl in the form

(1= 7 golfw) = gal jo). (3.2)
where
ZUw) = ~DjwC, D, (3.3)

11 is casy 10 sce that the diagonal elements of Z(jo) arc
zero. The magnitude of cach off-diagonal element zi of
ZLjw) provides a dirccl measure of the degree of coupling
between the {-th and &-th modes. Coupling between the
iwo modes may be neglected whenever the absolute value

of z is sulficiently small. This condition may be staled as

fzul €V 3.4)

It is straightforward 1o show that

—ju)é‘.}
Zip = ——== . ——— (3.5)
Joi —w? 728 mie N ol —? F72E o

The absolute value of 2y is given by

|zl = LA fle)cal, (3.6)
where

12
flw)= @ , (3.7

Hewi —@® Y +(28m) }m

and f{w) is as defined in Lhe previous section. As shown
in equations (3.6) and (3.7), the value of |zix| depends on
i wr, Ei. Exy Ca. and . Notice that |zix| attains the
maximum aeither at o = w; not at @ = wx. The maximum
of |2kl always occurs somewhere hetween my; and k.
However, the functions [£(@)], | flw}| attain the maxi-
mwn al, =, wy respeclively. The frequency separ-

ation |w; —wsl and the ratio of the off-diagonal (o diag-
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onal terms of the normalized damping malrix C would
have strong influence on |zi|. Coupling belween the i-th
and &-th modes is the strongest when |zl = ¢, where
c=sup ) zil. (3.8
H is clear that

suplziel < supl f{w) | supl fllw) | [Ein). a9

Since the supremum of | f{w)) and | flw)}) can be writtcn

as
1
sup | flw) = 7—25= , .10
K iy
and
1
Sl.lp‘fg-((k))l=77¢,—v” ’ 3.1
2pwn
it follows by laking positive square roots thal
Gl |3 [ Ll )7 .
2&; i 2ee o ’

which is valid for any & >0, =1, ..., #. Therefore, the
methed of approximate decoupling would not cause ex-
cessive crrors if €, is sufficiently small. In addition, ex-
pression (3.12) provides a convenient means of estimating
the degree of modal coupling.

It is imporiant to discuss our results in Lhe light of ob-
setvations made by Hasselman(1976) and Warburton and
Soni(1977). Since Hasselman's result is equivalent to the
result provided by Warburton and Soni, we shall only re-
fer to the result of Hasselman for convenience. Two obsct-
vations are worth reporting. First, the method of approxi-
mate decoupling would not cause serious errors if the nor-
malized damping matrix € is strongly diagonally domi-
nant. For a mulli-degrce of freedom system, the ratic of
the off-diagonal to dtagonal (erms of C satisfies the re-

lation

lEJkI &

: 3.13
28 i 2w ( ‘

where g; has been deflined by equation (2.22). If the normal-

ized damping matrix is strongly diagonally dominant, 1.c.

o;

28 e0; <L

3.ta)

for all Z, then equation (3.12) implies that ¢ €|, and the

crrors introduced by apprtoximate decoupling must be

small. Hasselman has stated that the degree of coupling
belween two classical normal modes depends not only on
the ratto of the off-diagonal to diagonal terms of the nor-
malized damping matrix C. bul also on the percenlage of
critical damping tn the two modes and their frequency se-
paration. This conclusion has becn arrived with the as-
sumption that {zjz| attains the maximum either al w=cw; or
wx. The assumption is generally not correcl. If the modal
damping matrix C is strongly diagonally dominant, it is
nol necessary to stipulate an additional requirement, such
as adequate frequency separation between the modes, in
order 10 neglect the coupling cffect of modes in the sol-
ution of the system. In olher words, slrong diagonal
dominance of the matrix € is already a sofficient con-
dition for approximaic decoupling. Although the proof of
the above statement requires C 1o be strongly diagonally
dominant, il has been found, by numcrous examples, that
the statement may also be valid if € is strictly diagomally

dominant, i.e.

i

<1, (3.15)
28 wi

for all 7. That means adequale frequency separalion is not
necessary 1o ensure small errors, il the normalized damp-
ing malnx is strictly diagonally dominant. Secondly, il the
modal damping matrix € is not diagonally demisiant and
all damping cocfficients & are eguivalent in magnitude,
then an additional condilion thal adequate frequency sep-
aration exists between {wo maodes is needed in order lo
neglecl the modal coupling. This could be explaincd
simply by usiog grapbical method. In Fig. |, 1wo dashed

1.0
08
i)
v > N
/ N
% 0.6 | / ~\
2 ry, \\
<
& ALY S
= Iy Sl
04}~/ e
Ly \\\\,\
y -
i
02 W
i
J Iz,
0.0 —L L oo
0 2 L4 6 8 1
Frequency o

Figure 1. The effect of frequency separation on [z,,l.
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lines representing | fi{w)] and | filw}| are shown, and the
solid Iine represents |zxl. The values of paramelers used
in Fig. | correspond 1o those of the example of seclion 4,
The 7-th and &-th modes are the first and third modes re-
speclively. The qualitative features of Fig. 1, however, are
tvpical of any multi-degree of freedom system. Nolice
that the curves of | £} and | fdw} have a bell-shape,
| fAO) =] 7{0)] =0, and both | file)| and | fi{en) | =0 and
w--+ou, The larger the frequency separation between the

two modes, the smaller 1he supremum of |24 becomes.

Therefore, for a coupled system with many degrees of

trcedom, we can neglect, in every case, atmost all off-di-
agonal lerms of C excepl Tor a few ofi-diagonal terms
whose associualed natural frequencies are adjacent (o (hose

of the corresponding diagonal terms.
V. An exampie

In this section, an example is given to illustrale the pos-
sible application off he results obtained so [ar, A low or-
der syslem is used for convenience. However. the major
resulls of this paper are particularty useful for Jarge-scale

systems. Consider a system whose normalized equation is

(100]{aq 2.04 —02 —0.19][ g,
010f|g.]+] —02 22 —03]]¢]| +

100 1] q -0.19 ~03 28] g

38 00 00])[q !

00 40 00| @] =|1] sin2s, “.1)
040 0.0 6.5 7 1

with zero initial conditions. We have o — 1.9493, . = 2,
@y=2.55 &, =0.523, & =&,=0.55. An approximale sol-
ution of system {4.1) is oblaincd by solving the lollowing

decoupled cquations

100} G 204 0 00 G

010} 1 0 22 0| G| +

60| ¢ 0 0 28)|dw

38 00 00][ g t

0.0 40 00| 4| =|1] sin2t {1.2)
100 0.0 65]) | ¢ 1

The exact solution g:{f) and the corresponding approxi-
male sohition 247} are plotted in Fig. 2. It can be seen
thal the steady state s reached afler a shorl transient

bchavior. The steady-state solution of system {4.2) is
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{0.245) sin(2¢ +1.521)
q88)=|(0.227) sin(2¢ — 1.571} (4.3)
{0.163) sin(2f - 1.151)

For the syslem (4.2), llgall= gl = 0.245. From equation
{2.27), » =0.227. Using cyguation (2.28), we ablain el <
{0.294} lg,ll -- 0.072, The error bound obtained by cx-
pressions (2.27) and (2.28) ts yuite close 1o the exact crror
and is plotled as soblid fines in Fig. 2. To demonstrate the
tghtuess ol the error bound developed in this paper, com-
parison is made with an error bound oblained previously
by Shahruz and Ma{1988). Theie error bound, which is
the tightest in o cerlain way, has been derived without
any assumption on the exlernal excitation, while Lhe error
bound (228} requires Lhe external excitution (o be har-
monic or periodic. Substantially greater effort is needed
(o compule the error bound ol Shahruz and Ma{1988).
Their crror bound, shown by dashed lines in Fig. 2, is
eqgurivalent Lo kel < 0.425 gl =0.1042, which is much lar-
ger than the error bound (2.28). As demonmstrated by this
example. the new error bound of this paper is superior, in
terms of accuracy and computational effort. The new cr-
ror bound can he oblained very readily by examining
only the normalized damping matrix. Extenstve numerical
calculations have been performed by the authors, and all
calculations have yickded the same qualitative conclusion

on the advantages of the use of the new error bound.

u4

error band of Shahruz and Ma (1988)

new error band

0.2

Displacement
=
=

-0.2

0.4 | 1 ]
0.0 25 50 15 10.0

Time

Figure 2. Comparison ol error hounds.

Modal coupling hetween any two modes tn this example
is exhibited in Tablc |. Modal coupling between the sec-
ond and the third mode is the most significant, and the

coupling hetween the first and the third is the weakest.
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The numbers in the table have been normalized as equ-
ation {3.2} implies:0 and | denote zero coupling and full
coupling respectively. As shown in the table, estimates of
modal coupling by equation (3.12) are quite accurate. The
estimale of coupling between the firsl and second mode is
particularly remarkable since the frequency of exlernal
cxcitalion is very close Lo 1he nalural frequencics of the
first and second modes. The normalized damping matrix
of system (4.1} is diagonally dominant. Even though the
maodal frequencics of the first and second mode are very
close, of (w —an)f{en)=2.5%, modal coupling between the
lwo modes is only 0.094. This agrees qualitatively with

our carlier discussion.

Table 1. Modal coupling belween any two modes.

(st mode | 2nd mode | 3rd mode |

“Istmode | Eq.3.12) | 00944 | 00795
Exact sol. I 0.0943 0.0731

Bimode | Eq(3.12) | 00944 1| azes
Gxactsol | 00943 | 1 | odis4

Wd mode | Eq.(3.12) | 00795 o208 |
Exacl sol. 0.0731 ¢1159 i

V. Conclusions

The normalized coordinates of a nonclassically damped
system are coupled by nonzero off-diagonal elementls in
the normalized damping matrix. A common procedure in
the solution of a damped linear system with small off-di-
agonal dumping elements is to neglect the off-diagonal ele-
ments of the normalized damping matrix. In this paper,
the exient of approximation introduced by this method of
decoupling the system is cvaluated. The major results,
summarized in the fellowing, are applicable 10 any linear

systern with nonclassical damping elements.

{1)A new crror bound (2.28) has been derived for the case
of harmonic or periodic excitation. In terms of accu-
racy and compulational effort, the new error bound is
superior 1o earlier ones. And unlike the error bounds
of Shabruz and Ma(1988), the new error bound is
valid for all &; > 0. Because of relative case with which
the new error bound can be computed, it is straight-
forward to first examine the error bound belore the
method of approximate decoupling is applied.

{2}t has been shown in expression (3.12) how modaf cou-
pling between any two modes can be estimated by the
corresponding ratios of the off-diagonal 1o diagonal

terms of the normalized damping matrix. I the nor-

(54
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>

10

malized damping matrix is strongly diagonally domi-
nanl, modal coupling can be neglected without causing
sertous errors in the approximale solution. In the cuse,
it is nol mecessary to stipulate an additional require-
menl, such as adequate frequency separation between
any lwo modes, to apply the method of approximate

decoupling.
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