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Abstract

One common procedure in the approximate solution of a nonclassically damped linear system is to neglect the off-dnag- 
onal elements of the normalized damping matrix. A tight error bound, which can be computed with relative ease, is given 
for this method of solution. The role that modal coupling plays in the control of error is clarified. If the normalized damp
ing matrix is strongly diagonally dominant, it is shown that adequate frequency separation is not necessary to ensure small 
errors.

I. Introduction

A linear dynamic system is said to have classical nor
mal modes if the system possesses a complete set of real, 
orthonormal eigenvectors. In general, an undamped dy
namic system always possesses c' :sical normal modes. 
When dissipative forces are present, the system may or 
may not possess classical normal modes. If it does, the 
system is said to be classically damped. Caughey and 
O'Kelly(1965) have established a necessary and sufficient 
condition for the existence of classical normal modes in a 
damped linear system. If the criterion of Caughey and 
O'Kellly is not met, then nonclassical damping is said to 
exist. In reality, nonclassical damping comes from drastic 
variations of energy absorption rates of the materials in 
different parts of a structure. Typical examples of non
classically damped systems are a nuclear reactor contain- 
ment vessel founded on soft soil subjected to earthquake 
motion(Clough and Mojtahedi, 1976), and a base-isolated 
structure in the same environment(Tsai and Kelly, 1988).

When dissipative forces are non시assical, it is generally 
difficult to analyze the system dynamics, owing to the 
complex nature of eigensolutions. Foss(1958) and Vigner- 
on(1986) proposed a state space approach which takes 
into account the orthogonality relations between the com
plex eigenvectors of a nonclassically damped system. The 
key to the utility of the eigensolutions is, of course, or
thogonality, which allows decoupling of the governing 
equations. One disadvantage of such exact methods is 

that they require significant numerical effort to determine 
the eigensolutions. The effort required is evidently intensi
fied by the fact that the eigensolutions of a nonclassically 
damped system are complex. From the analysts1 view
point, another disadvantage is the lack of physical insight 
afforded by methods which are intrinsically numerical in 
nature. Several authors have studied nonclassically dam
ped linear systems by approximate techniques. For in
stance, Cronin(1976) obtained an approximate solution 
for a nonclassically damped system under harmonic exci
tation by perturbation techniques. Chung and Lee(1986) 
applied perturbation techniques to obtain the eigensolut
ions of damped systems with weakly nonclassical damp
ing. Prater and Singh(1986), and Nair and Singh(1986) 
developed several indices to determine quantitatively the 
extent of nonclassical damping in discrete vibratory sys
tems. Nicholson(1987) gave upper bounds for the re
sponse of nonclassically damped systems under impulsive 
loads and step loads.

In analyzing a nonclassically damped system, one com
mon approximation is to neglect those damping terms 
which are nonclassical, and retain the classical ones. This 
approach is termed the method of approximate decoup
ling. For large-scale systems, the computational effort at 
adopting approximate decoupling is at least an order of 
magnitude smaller than the method of complex modes. 
The sohition of the decoupled equations wo니d be close 
to the exact solution of the coupled equations if the non- 
dassical damping terms are sufficiently small. A dis
cussion on this topic is given, for example, by Meirovitch 
(1967), Thomson et al.(1974), and Cronin(1976). Approxi
mate decoupling of a damped linear system is often con
venient and practical. An attempt to evaluate the extent 
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of approximation, introduced by neglecting the nonclass- 
ical damping term, has recently been reported by Shahruz 
and Ma(1988). It is claimed 나uit the error bounds obta
ined in their paper are the tightest in a certain functional 
form, if the external excitation is arbitrary. However, 
computational effort to find the error bounds is 이uile 
involved,

The purpose of this paper is to derive a new error 
bound which can be obtained with less computational ef
fort, as well as to highlight the modal coupling due to the 
nonclassical damping terms. It has been found that the 
new error bound is generally sharper than the previous 
ones 응iven by Shahruz and Ma(1988), but the derivation 
of the new error bound requires an additional assumption 
that the external excitation be periodic. The organization 
of the paper is as follows. In section 2, an expression for 
the error bound that involves less computational effort is 
derived. The error bound due to approximate decoupling 
has an intimate relationship with modal coupling because 
of the nonclassical damping terms. Modal coupling be
tween any two adjacent modes is highlighted in section 3. 
A criterion which ensures that approximate decoupling 
does not cause excessive errors in the response is also 
presented in this section. An example in section 4 illustr
ates the theoretical developments pursued in this paper. 
In section 5, a summary of findings is provided.

II. Error bound for approximate decoupling

Consider the equation of motion of a discrete or discr
etized linear system under external excitation

Mx 4- Mx + Kx = /(/), x(0) = Xq , x(0) = , £ 느 0,
(2.1)

where the mass matrix M, the damping matrix C, and the 
stiffness matrix K are of order nx«;the displacement 
vector x(t) and the external excitation /(/) are n-dimen
sional vectors. For passive systems, the matrices M, Cy 
and K are symmetric and positive definite. These assum
ptions are not arbitrary, but in fact have solid footing in 
the theory of Lagrangian dynamics. Symmetry of M 
results naturally from the transformation from Cartesian 
to generalized coordinates for a scleronomic system, and 
the positive definiteness requirement is a property of kin
etic energy. Symmetry of K results from linearization of 
the potential energy function about an equilibrium point, 
and the form of Rayleigh dissipation function ensures 
symmetry of C(Rosenberg, 1977; Greenwood, 1977).

Let U denote the nXn modal matrix corresponding to 
the sy이em (2.1). The modal matrix is a nonsingular ma
trix whose columns arc the eigenvectors of the generalized 
symmetric eigenvalue problem

K/ Wu； (2.2)

where “)；>0 and w(i), i = 1,…，n, are the eigenvalues and 
the corresponding eigenvectors, respectively. The modal 
matrix is usually orthonormalized according to UrMV = 
/, where Ur denotes the transpose of U, and I represents 
the nXn identity matrix. Hence, UTKU — diagico},…，a)i)

It is well-known that by the linear transformation 
x(t、)= Uq(、t\ equation (2.1) can be written in the nor
malized form

q +Cq +(2勺*以£),  q(0)=U「M%o, = £그0,

(2.3)

where C = U「CU, g(t) = UTf(t), is the w-dimensional 
vector of nori.iili^ou coordinates. The symmetric matrix 
C is cal c/ the.'iialized damping matrix.

The normaiizvJ imping matrix C is not diagonal in 
general. When C is not diagonal, the system (2.1) is said 
to be nonclassically damped. If the damping matrix C is a 
linear combination of the mass and the stiffness matrices, 
then C is diagonal；this is a sufficient condition under 
which C is diagonal, and was originally given by Lord 
Rayleigh(1945). The necessary and sufficient condition un
der which C is diagonal has been given by Caughey and 
O'kelly(1965), When C is diagonal, system (2.3) is a set of 
n decoupled second-order differential equations, which 
can be solved for 火)conveniently. Then, the solution of 
(2.1) is obtained from x(t) — for all f 느 0.

In the following, we shall use the L® norm of a vector, 
defined by Hr(/>)|| =max IXi(p)| for any vector x(p)~[x\ 

IM i W n
(/)), x„(p)]T, where is a parameter. Rewrite system
(2.3) as

q +(乙 +C)4 +Q勺느Q(0)=l尸目(0)卬7"為

，느 0, (2.4)

where Cd +Cr = C, Cy = diag(26a)i,…，2&is a matrix 

composed of the diagonal elements of C, and Cr =[鬲]is 
a symmetric nXn matrix with zero diagonal elements. 
Notice that by 나}e positive definiteness of C, &〉0 for all 
z= 1, • n. We now decouple system (2.4) by neglecting 
Cr, and denote the solution of the resulting equation by
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Q血).Thus, we have

q& da +Q' 集 = t 그 0, (2.5)

with q(0) = g(0), and 2』0)=2(0). Assume at this time that 
the excitation is harmonic. Introduce a diagonal trans
formation matrix D prescribed by

D — diag I —亍，一丄===,…，一

[、/折一aF+丿2£啊仞 — w2 +/2fnwn(o ]
(2.6)

where co is the excitation frequency and j =、J一 1. Premulti
tiplying D to equations (2.4) and (2.5), and using the ident
ity /= DD~\ we have

DID" q +D{Cd +巳)庭-” +D^DD~{q^ Dg{t\

(2.7)
DIDD~}qa ^DCdDD^xqa +DQ.2DD~[qa = Dg{tY (2.8)

Subtracting equation (2.8) from (2,7), and denoting the n- 
dimensional vector of error by e-q — qa, we obtain,

DIDD^'e +DCdDD~'e ^-DQ2DD~]e= - DCrq. (2.9)

where e(0)~e(0)~0. If we examine the frequency re
sponse of equation (2.9), we have

[DQ2D-Dcd2D +Dja)CdD]D^}e(j^ = -Dj^Crq(j(o),
(2.10)

Since DQ2D—Dco2D +Dja)3D = I, equation (2.10) can 

be cast in the form

e(j co) = Hq(沁' (2.11)

where // is a matrix given by

H= -D2jcoCr. (2.12)

To obtain an upper bound for |以_汕)11 from equation 

(2.11), we have

KzSIImSI 他(丿Gll， (2.13)

where ||//|| is the J induced norm of H defined by

II//il - max j £ I hik I j. (2.14)

Here, hik is the ik~Vn element of the matrix H. From equ

ation (2.12), hik can be expressed as

膈 = 一. . =一=그쓰実 ====_ . (2,! 5)
、/(房一(疽 +丿2(号")浦。V a)i —co2 +丿2&(场(。

The absolute value of hik can be written as

I加d = L/；(s)|2 伝捐 (2.16)

where

(或
X(co) =  -------------------------------3厂- (2-17)

^(co] ~CD2)2 +(2齢妨"))2 }

To evaluate the supremum of I hik I over the set of exci
tation frequencies, we first write

sup I /以 I =sup I7X(O)121cik I. (2.18)

The supremum of IZ(w) I occurs at co —a)i, and

sup IZ(cu)l = / 丄— . (2.19)
V

Substituting the formula (2.19) in expression (2.18), we 
obtain

sup \htk\ = 4~~ , (2.20)
2曰(妨

which is valid for any &〉0, z = l, n. It now follows 
from equation (2.14) that

II 헤 M max 22 ■一 . (2.21)
i *=  I 2&s k^i

If we define the row sum of the absolute vahies of the ofT- 
diagonal elements of the normalized damping matrix C by

石=L I Cik \, (2.22)*= I

then expression (2.21) can be rewritten as

II//II M max I —~— 1 . (2.23)
> [2c：co：]

Therefore, in the frequency domain, equation (2.13) im
plies that

k(j'a))ll M max I —— I ll^(7(o)l|. (2.24)
i I 2&S ]

Since 叫/2&(叫 is constant, without loss of generality, ex
pression (2.24) can be rewritten in the form
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脂(圳|M max I；」丨 时(세， (2.25)
,I ]

This result states that if the row sum of the absolute val
ues of the off-diagonal elements,(方，of C is small com
pared to the diagonal term of C, then the error 
committed in approximate decoupling is small. This is 
consistent with an earlier result given by Shahruz and 
Ma(1988), which shows that the error is small if and if 
only s/2gs《l for all i= 1, n. By extensive numeri
cal calculations, it has been found that the new error 
bound (2.25) is generally tighter than the previous error 

bounds given by Shahruz and Ma(1988).
To continue with the further analysis of approximation 

error, assume that 们 is sufficiently small for all i= 1,…， 
n. If tr, is small, qa should be close to the actual solution. 
It w이ild be of interest to obtain a neighborhood of qa in 
which the actual solution q lies. Since q = e by the 
triangle inequality, II에 Mil에 +11 德L From equation (2.13), 

we obtain

M세 쁘느 血(세 • 。聞

1 — ll/l II

That is, q lies in the 丨11^(/) II neighborhood of qa- 
1 — 11/7 11

It has been assumed that 1 — >0, which is always the
case if is small for all z - 1, n. Define

r-max —— 1 . (2.27)
I 2<^i co： j

Then, from equation (2,23), 九 Since /(%) — x/(l — 
%) is an increasing function for 0^r< 1, it follows from 

equation (2.26) that

lk(/)ll M ~~—叼a(圳L (2.28)
1 ~r

Notice that the above error bounds have been derived by 
assuming harmonic excitation, but the results can be ex
tended to any other type of periodic excitation by the 
method of Fourier series. The utility of the error bound 
expressed by equations (2.27) and (2.28) lies in the rela
tive ease with which they can be comp니ted. The error 
bound can be evaluated by merely examining the norma
lized damping matrix C, before the process of approxi
mate decoupling is performed. Moreover, the error bound 
prescribed by expressions (2.27) and (2.28) is gener시ty tigh
ter than previous tight error bound given by Shahruz and 
Ma(1988). This point will be illustrated by an example.

III. Modal coupling

In this section, modal coupling between any two adjac- 
디M modes is investigated. The aim is to derive a criterion 
to ensure that approximate decoupling does not cause ex
cessive errors in the response. Rewrite equation (2.7) as

DlDqn +DCjD4/> +DQ2Dq{) + DCr Dq gn(t), (3.1)

where= iLq and g从t、) = Since DC11 D — Da)2D 
= L the frequency response matrix of equat

ion (3.1) can be cast in the form

|/-Z(yw)| 如侦oO =幻)(3・2)

where

Z(/g>) = — Dj(oCr D. (3.3)

(3.4)

It is easy to see that the diagonal elements of are 
zero. The magnitude of each off-diagonal element z,k of 
Z(j(o) provides a direct measure of the degree of coupling 
between the /-th and 左Ah modes. Coupling between the 
two modes may be neglected whenever the absolute value 
of ztk is sufficiently small. This condition may be stated as

I氷丨《L

It is straightforward to show that

____________ — 気 ____
、/(箫一(疽+丿2如m V-co2 +丿2淑以(力

The absolute value of 毎 is given by

I Zik \ = I Z(w) II /认«시 I & I, 

where

_____ 쓰兰________ 
"3 {(a弗-护)2 +(2新她)2}'"'

and is as defined in the previous section, 
in equations (3.6) and (3.7), the value of Izik \ depends on 

々，&, andNotice that \zlk\ attains the 
maximum neither at cd -(Oi nor at co = u사 - The maximum 
of I ztk I always occurs somewhere between and (以. 

however, the functions I/(co) I,丨 /认丨 attain the maxi
mum at, cd =(ot, it)k respectiv이y. The frequency separ
ation h妨一end and the ratio of the off-diagonal to diag

(3.5)

(3-6)

(3.7)

As shown
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onal terms of the normalized damping matrix C would 
have strong influence on |zf>|. Coupling between the z-th 
and 农th modes is the strongest when IZikI -c, where

C = sup IZik\. (3.8)

It is clear that

suplz^l M sup I/Ka시 sup I /血)) 丨 I cik I. (3.9)

Since the supremum of I /(co) I and I I can be written 

sup IZ<co)l = (3.10)

and 

sup I /血)I =
COk

(3.11)

small. Hasselman has stated that the degree of coupling 
between two classical normal modes depends not only on 
the ratio of the off-diagonal to diagonal terms of the nor
malized damping matrix C, but also on the percentage of 
critical damping in the two modes and their frequency se
paration. This conclusion has been arrived with the as
sumption that I Zik I attains the maximum either at = c山 or 
a)k- The assumption is generally not correct. If the modal 
damping matrix C is strongly diagonally dominant, it is 
not necessary to stipulate an additional requirement, such 
as adequate frequency separation between the modes, in 
order to neglect the coupling effect of modes tn the sol
ution of the system. In other words, strong diagonal 
dominance of the matrix C is already a sufficient con
dition for approximate decoupling. Although the proof of 
the above statement requires C to be strongly diagonally 
dominant, it has been found, by numerous examples, that 
the statement may also be valid if C is strictly diagonally 
dominant, i.e.

it follows by taking positive square roots that

_!희」*

2&M사 ]

l&l i
2沁

(3.⑵

which is valid for any &〉0, i= 1, n. Therefore, the 
method of approximate decoupling would not cause ex*  
cessive errors if Cr is sufficiently small. In addition, ex
pression (3.12) provides a convenient means of estimating 

the degree of modal coupling.
It is important to discuss our results in the light of ob

servations made by Hasselman(1976) and Warburton and 
Soni(1977). Since Hasselman's result is equivalent to the 
result provided by Warburton and Soni, we shall only re
fer to the result of Hasselman for convenience. Two obser
vations are worth reporting. First, the method of approxi
mate decoupling would not cause serious errors if the nor
malized damping matrix C is strongly diagonally domi
nant. For a multi-degree of freedom system, the ratio of 
the off-diagonal to diagonal terms of C satisfies the re
lation 

1&丨 S

2&a无 26 
(3.13)

where a has been defined by equation (2.22). If the normal
ized damping matrix is strongly diagonally dominant, i.e.

(3.14)2弘，《'

for all Z, then equation (3.12) implies that c < 1, and the 
errors introduced by approximate decoupling must be

for all i. That means adequate frequency separation is not 
necessary to ensure small errors, if the normalized damp
ing matrix is strictly diagonally dominant. Secondly, if the 
modal damping matrix C is not diagonally dominant and 
all damping coefficients & are equivalent in magnitude, 
then an additional condition that adequate frequency sep
aration exists between two modes is needed in order to 
neglect the modal coupling. This could be explanned 
simply by using graphical method. In Fig. I, two dashed 

i.o

0.8

0.6

0.4

0.2

Frequency <o

Figure 1. The effect of frequency separation on Iz,-；|.
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lines representing | fj(co) \ and I A(w)l are shown, and the 
solid line represents Id. The values of parameters used 
in Fig. 1 correspond to those of the example of section 4. 
The z-th and 左-th modes are the first and third modes re
spectively. The qualitative features of Fig. 1, however, are 
typical of any multi-degree of freedom system. Notice 
that 나ic curves of I /(to) I and 1/血이 have a bell-shape, 
顷0)1 니 /认0)1 = 0, and both I fj(co) \ and 仇(«)) |and 
co-*co.  The larger the fie아uency separation between the 
two modes, the smaller the supremum of |如| becomes. 
Therefore, for a coupled system with many degrees of 
freedom, we can neglect, in every case, almost all ofRii- 
agonal terms of C except for a few off-diagonal terms 
whose associated natural frequencies are adjacent to those 
of the corresponding diagonal terms.

IV. An example

In this section, an example is given to illustrate the pos
sible application oO the results obtained so far. A low or

der system is used for convenience. However, the major 
results of this paper are particularly useful for large-scale

'(0.245) sin(2f +1.521)
qjt) = (0.227) sin(가 一1.571) (4.3)

_ (0.163) sin(2^ -1.151).

For the system (4.2), l|(?a|| - ||^s|| = 0.245. From equation 
(2.27), r - 0.227. Using equation (2.28), we obtain ||에 M 

(0.294네g/l = ().072. The error bound obtained by ex
pressions (2.27) and (2.28) is quite close to the exact error 
and is plotted as solid lines in Fig. 2. To demonstrate the 
tightness of the error bound developed in this paper, com
parison is made with an error bound obtained previously 
by Shahruz and Ma(1988). Their error bound, which is 
the tightest in a certain way, has been derived without 
any assumption on the external excitation, while the error 
bound (2.2X) requires the external excitation to be har
monic or periodic. Substantially greater effort is needed 
to compute the error bound of Shahruz and Ma(1988). 
Their error bound, shown by dashed lines in Fig. 2, is 
cqiiivalcnt to ||에 M ().425 Ik시I = 0,1042, which is m나ch lar
ger than the error bound (2.28). As demonstrated by 나】is 
example, the new error bound of this paper is superior, in 
terms of accuracy and computational effort. The new er
ror bound can be obtained very readily by examining 
only the normalized damping matrix. Extensive numerical 
calculations have been performed by the authors, and all 
calculations have yielded the same qualitative conclusion 
on the advantages of the use of the new error bound.

3.8 0.0 0.0 q、

0.0 4.0 ().0 也

0.0 0.0 6.5]

1
1
1

sin 2£,

with zero initial conditions. We have(山=1.9493,(片=2, 
93 = 2.55, & =0.523, & = &3 = 0・55. An approximate sol
ution of system (4.1) is obtained by solving the following 

decoupled equations

1 0 0
0 1 0
0 0 1

q\a 2.04 0 0 <71«

Q2a + 0 2.2 0 Q2a

0 0 2.8 .Qia

+

(l\a

(h<i

qu

3.8 0.0 0.0
0.0 4.0 0.0
0.0 0.0 6.5

sin It. (4.2)

0.4

(4.1)

0

u

브
I
I
8
d

2.5 5.0 7.5

Time

Figure 2- Comparison of error bounds.

10.0o.o

The exact solution q?。) and the corresponding approxi
mate s이uti이! Q2a(.t) are plotted in Fig. 2. It can be seen 
that the steady state is reached after a short transient 
behavior. The steady-state solution of system (4.2) is

Modal coupling between any two modes in this example 
is exhibited in Table L Modal coupling between the sec
ond and the third mode is the most significant, and the 
coupling between the first and the third is the weakest.
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The numbers in the table have been normalized as equ
ation (3.2) implies ；0 and 1 denote zero coupling and full 
coupling respectively. As shown in the table, estimates of 
modal coupling by equation (3.12) are quite accurate. The 
estimate of coupling between the first and second mode is 
particularly remarkable since the frequency of external 
excitation is very close to the natural frequencies of the 
fii•이 and second modes. The normalized damping matrix 
of system (4.1) is diagonally dominant. Even though the 
modal frequencies of the first and second mode are very 
close, or (co2-coi)/(coi) = 2.5%, modal coupling between the 
two modes is only 0.094. This agrees qualitatively with 
our earlier discussion.

Table 1. Modal coupling between any two modes.

I 1st mode j E아.(3.12)

1st mode

1

2nd mode

0.0944

3rd mode 

(1.0795
1 j Exact sol. 1 0,0943 0.0731

2st mode 1 Eq.(3.12)

1 J Exact sol.

3rd mode Eq.(3.12)

__ 0.0944

—으叫43 _

().0795

_ 1____

1_____

0.1208

0.1208

().1154二
1

1 Exact sol. 0.0731 0.H54 1

V. Conclusions

The normalized coordinates of a nonclassically damped 
system are coupled by nonzero off-diagonal elements in 
the normalized damping matrix. A common procedure in 
the solution of a damped linear system with small off-di- 
agonal damping elements is to neglect the off-diagonal ele
ments of the normalized damping matrix. In this paper, 
the extent of approximation introduced by this method of 

decoupling the system is evaluated. The major results, 
summarized in the following, are applicable to any linear 
system with nonclassical damping elements.

(1) A new error bound (2.28) has been derived for the case 
of harmonic or periodic excitation. In terms of accu
racy and computational effort, the new error bound is 
superior to earlier ones. And unlike the error bounds 
of Shahruz and Ma(1988), the new error bound is 
valid for all > 0. Because of relative ease with which 
the new error bound can be computed, it is straight
forward to first examine the error bound before the 
method of approximate decoupling is applied.

(2) It has been shown in expression (3.12) how modal cou
pling between any two modes can be estimated by the 
corresponding ratios of the off-diagonal to diagonal 
terms of the normalized damping matrix. If the nor

malized damping matrix is strongly diagonally domi
nant, modal coupling can be neglected without causing 
serious errors in the approximate solution. In the case, 
it is not necessary to stip니ate an additional require
ment, such as adequate frequency separation between 
any two modes, to apply the method of approximate 
decoupling.
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