• 제목/요약/키워드: approximate approach

검색결과 519건 처리시간 0.026초

액체 추진 로켓의 최적 연료 바이어스 산정 및 추진제 잔류량 분석 (Optimal Selection of Fuel Bias and Propellant Residual Analysis of a Liquid Rocket)

  • 송은정;조상범;노웅래
    • 한국항공우주학회지
    • /
    • 제43권1호
    • /
    • pp.88-95
    • /
    • 2015
  • 본 논문에서는 액체 엔진의 혼합비 오차와 추진제 탑재 오차가 성능에 미치는 영향에 대해서 분석하였다. 75톤급 엔진 4개를 클러스터링하는 발사체 모델에 대해 이런 오차에 의해 발생하는 추진제 잔류량을 확률적인 Monte-Carlo 방법을 사용하여 계산하고 잔류량을 최소화할 수 있는 최적 연료 바이어스를 도출하였다. 다른 발사체에 사용된 근사식을 사용한 해석적인 방법과 비교함으로써 얻어진 결과의 타당성을 검토하였다.

QuLa: Queue and Latency-Aware Service Selection and Routing in Service-Centric Networking

  • Smet, Piet;Simoens, Pieter;Dhoedt, Bart
    • Journal of Communications and Networks
    • /
    • 제17권3호
    • /
    • pp.306-320
    • /
    • 2015
  • Due to an explosive growth in services running in different datacenters, there is need for service selection and routing to deliver user requests to the best service instance. In current solutions, it is generally the client that must first select a datacenter to forward the request to before an internal load-balancer of the selected datacenter can select the optimal instance. An optimal selection requires knowledge of both network and server characteristics, making clients less suitable to make this decision. Information-Centric Networking (ICN) research solved a similar selection problem for static data retrieval by integrating content delivery as a native network feature. We address the selection problem for services by extending the ICN-principles for services. In this paper we present Queue and Latency, a network-driven service selection algorithm which maps user demand to service instances, taking into account both network and server metrics. To reduce the size of service router forwarding tables, we present a statistical method to approximate an optimal load distribution with minimized router state required. Simulation results show that our statistical routing approach approximates the average system response time of source-based routing with minimized state in forwarding tables.

Bilinear elastodynamical models of cracked concrete beams

  • Pandey, Umesh Kumar;Benipal, Gurmail S.
    • Structural Engineering and Mechanics
    • /
    • 제39권4호
    • /
    • pp.465-498
    • /
    • 2011
  • Concrete structures are generally cracked in flexural tension at working loads. Concrete beams with asymmetric section details and crack patterns exhibit different flexural rigidity depending upon the sense of the applied flexural moment. In this paper, three different models, having the same natural period, of such SDOF bilinear dynamical systems have been proposed. The Model-I and Model-II have constant damping coefficient, but the latter is characterized by two stiffness coefficients depending upon the sense of vibration amplitude. The Model-III, additionally, has two damping coefficients as well. In this paper, the dynamical response of Model-III to sinusoidal loading has been investigated and compared with that of Model-II studied earlier. It has been found that Model-III exhibits regular and irregular sub-harmonics, jump phenomena and strong sensitivity to initial conditions, forcing frequency, system period as well as the sense of peak sinusoidal force. The constant sustained load has been found to affect the natural period of the dynamical system. The predictions of Model-I have been compared with those of the approximate linear model adopted in present practice. The behaviour exhibited by different models of the SDOF cracked elastic concrete structures under working loads and the theoretical and practical implications of the approach followed have been critically evaluated.

탄성파 속도 이방성을 고려한 3차원 주시 모델링 (3D traveltime calculation considering seismic velocity anisotropy)

  • 정창호;서정희
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.203-208
    • /
    • 2007
  • Due to the long tectonic history and the very complex geologic formations in Korea, the anisotropic characteristics of subsurface material may often change very greatly and locally. The algorithms for the travel time computation commonly used, however, may not give sufficiently precise results particularly for the complex and strong anisotropic model, since they are based on the two-dimensional (2D) earth and/or weak anisotropy assumptions. This study is intended to develope a three-dimensional (3D) modeling algorithm to precisely calculate the first arrival time in the complex anisotropic media. We assume 3D TTI (tilted transversely isotropy) medium having the arbitrary symmetry axis. The algorithm includes the 2D non-linear interpolation scheme to calculate the traveltimes inside the grid and the 3D traveltime mapping to fill the 3D model with first arrival times. The weak anisotropy assumption, moreover, can be overcome through devising a numerical approach of the steepest descent method in the calculation of minimum traveltime, instead of using approximate solution.

  • PDF

제조 시스템의 최적 신뢰도 및 보전도 할당 (Allocation of the Optimal Reliability and Maintainability in Manufacturing Systems)

  • 이상철
    • 산업경영시스템학회지
    • /
    • 제22권50호
    • /
    • pp.23-32
    • /
    • 1999
  • Reliability and maintainability allocation in the analysis of the system's design, with the objective of planning and installing the individual components in such a way that the system performance is achieved. This paper has been made to solve an important task in reliability management of manufacturing systems within the general objective being to increase productivity while maintaining costs low. Thus, the purpose of this paper is to provide an analytical approach to determine an optimal reliability and maintainability allocation, trading off among system performance and parts investment costs. Two important considerations will be addressed in this regard : (ⅰ) determine the reliability and maintainability allocation of parts which maximizes a given production index, having fixed the total cost of investments ; and (ⅱ) determine the reliability and maintainability allocation which minimizes the total cost of investments, having fixed a minimum acceptable level of productivity. The procedure proposed in this paper is able to provide to managers and designers useful indications on the reliability and maintainability characteristics of parts in series -parallel systems. And this heuristic model is a decision support tool for contractors who are involved in large scale design projects such as ship and aircraft design. Numerical examples prove that an approximate expression of the average throughput rate is sufficiently accurate to be used in a numerical optimization method.

  • PDF

Three-Dimensional Effects on Added Masses of Ship-Like Forms for Higher Harmonic Modes

  • Y.K.,Chon
    • 대한조선학회지
    • /
    • 제25권2호
    • /
    • pp.19-30
    • /
    • 1988
  • Sectional added masses of an elastic beam vibrating vertically on the free surface in higher harmonic modes are evaluated. Hydrodynamic interactions between neighboring sections, which strip theory ignores, are considered for modal wave lengths of the order of magnitude of cross-sectional dimensions of the body. An approximate solution of modified Helmholtz equation which becomes a singular perturbation problem at small wave lengths is secured to get an analytic expression for added masses attending higher harmonic modes. As a bound of the present theory, the modified Helmholtz equation is solved for the long flat plate vibrating at high frequency on the water surface without any limitations on modal frequency. Finally, extensive series of numerical calculations are carried out for ship-like forms. It is found that when modal wave length is comparable to or shorter than a typical cross-sectional dimension of a body, sectional interaction effects are large which result in considerable reductions in added masses. For a fuller section, the ratio of added mass reduction is greater. In the limit of vanishing sectional area, the added masses approach to that of flat plate of equal beam. It is shown that the added mass distribution for a Legendre modal from can be determined form the present theory and that the results agree with the extensive three-dimensional determination of Vorus and Hilarides.

  • PDF

불확실성을 가지는 전기 구동 논홀로노믹 이동 로봇의 궤적 추종을 위한 강인 적응 퍼지 백스테핑 제어 (Robust Adaptive Fuzzy Backstepping Control for Trajectory Tracking of an Electrically Driven Nonholonomic Mobile Robot with Uncertainties)

  • 신진호
    • 제어로봇시스템학회논문지
    • /
    • 제18권10호
    • /
    • pp.902-911
    • /
    • 2012
  • This paper proposes a robust adaptive fuzzy backstepping control scheme for trajectory tracking of an electrically driven nonholonomic mobile robot with uncertainties and actuator dynamics. A complete model of an electrically driven nonholonomic mobile robot described in this work includes all models of the uncertain robot kinematics with a nonholonomic constraint, the uncertain robot body dynamics with uncertain frictions and unmodeled disturbances, and the uncertain actuator dynamics with disturbances. The proposed control scheme uses the backstepping control approach through a kinematic controller and a robust adaptive fuzzy velocity tracking controller. The presented control scheme has a voltage control input with an auxiliary current control input rather than a torque control input. It has two FBFNs(Fuzzy Basis Function Networks) to approximate two unknown nonlinear robot dynamic functions and a robust adaptive control input with the proposed adaptive laws to overcome the uncertainties such as parameter uncertainties and external disturbances. The proposed control scheme does not a priori require the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. It can also alleviate the chattering of the control input. Using the Lyapunov stability theory, the stability of the closed-loop robot control system is guaranteed. Simulation results show the validity and robustness of the proposed control scheme.

5축 가공의 특이영역에서 공구궤적 오차 - Part I: 궤적오차 모델링 - (Tool-trajectory Error at the Singular Area of Five-axis Machining - Part I: Trajectory Error Modeling -)

  • 소범식;정융호;윤재득
    • 한국CDE학회논문집
    • /
    • 제14권1호
    • /
    • pp.18-24
    • /
    • 2009
  • This paper proposes an analytical method of evaluating the maximum error by modeling the exact tool path for the tool traverse singular region in five-axis machining. It is known that the NC data from the inverse kinematics transformation of 5-axis machining can generate singular positions where incoherent movements of the rotary axes can appear. These lead to unexpected errors and abrupt operations, resulting in scoring on the machined surface. To resolve this problem, previous methods have calculated several tool positions during a singular operation, using inverse kinematics equations to predict tool trajectory and approximate the maximum error. This type of numerical approach, configuring the tool trajectory, requires much computation time to obtain a sufficient number of tool positions in a region. We have derived an analytical equation for the tool trajectory in a singular area by modeling the tool operation into a linear and a nonlinear part that is a general form of the tool trajectory in the singular area and that is suitable for all types of five-axis machine tools. In addition, we have evaluated the maximum tool-path error exactly, using our analytical model. Our algorithm can be used to modify NC data, making the operation smoother and bringing any errors to within tolerance.

Fast GPU Computation of the Mass Properties of a General Shape and its Application to Buoyancy Simulation

  • Kim, Jin-Wook;Kim, Soo-Jae;Ko, Hee-Dong;Terzopoulos, Demetri
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 3부
    • /
    • pp.326-333
    • /
    • 2007
  • To simulate solid dynamics,a we must com-pute the mass, the center of mass, and the products of inertia about the axes of the body of interest. These mass property computations must be continuously re-peated for certain simulations with rigid bodies or as the shape of the body changes. We introduce a GPU-friendly algorithm to approximate the mass properties for an arbitrarily shaped body. Our algorithm converts the necessary volume integrals into surface integrals on a projected plane. It then maps the plane into a frame-buffer in order to perform the surface integrals rapidly on the GPU. To deal with non-convex shapes, we use a depth-peeling algorithm. Our approach is image-based; hence, it is not restricted by the mathematical or geometric representation of the body, which means that it can efficiently compute the mass properties of any object that can be rendered on the graphics hardware. We compare the speed and accuracy of our algorithm with an analytic algorithm, and demonstrate it in a hydrostatic buoyancy simulation for real-time applications, such as interactive games.

  • PDF

전압벡터의 근사 전압함수를 이용한 PMSM의 DTC-PWM 제어방식 (A DTC-PWM Control Scheme of PMSM using an Approximated Voltage Function of Voltage Vector)

  • 곽윤창;이동희
    • 전력전자학회논문지
    • /
    • 제20권5호
    • /
    • pp.421-428
    • /
    • 2015
  • An advanced direct torque control (DTC) with pulse width modulation (PWM) method is presented in this paper. The duty ratio calculation of the selected voltage vector is based on the voltage functions of the selected voltage vector according to the sector angle. The proposed DTC uses a conventional DTC scheme with six sector divisions and switching rules. However, the winding voltages are supplied by the PWM approach. Furthermore, the duty ratio of the switching voltage vector is determined by the flux, torque error, and motor speed. The base voltage that shall determine the duty ratio can be calculated by approximate voltage functions according to the voltage angle. For the calculation of base voltages, second-order quadratic functions are used to express the output voltage of the selected voltage vector according to voltage angle. The coefficients for the second-order quadratic functions are selected by the voltage vector, which is determined by the switching rules of the DTC. In addition, the voltage functions are calculated by the coefficients and voltage angle between the voltage vector and rotor position. The switching voltages from the calculated duty ratio can supply the proper torque and flux to reduce the ripple and error. The proposed control scheme is verified through practical experimental comparisons.