• Title/Summary/Keyword: apparent first-order

Search Result 116, Processing Time 0.026 seconds

A Fast Calculation of Apparent Soil Resistivity Using Exponential Sampling Method

  • Kang, Min-Jae;Kim, Ho-Chan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.268-273
    • /
    • 2019
  • The apparent soil resistivity is used for estimating multilayer soil parameters, such as, layer's depth and soil resistivity. The soil parameters are estimated by continuously revising those parameters until the error between the measured and calculated apparent soil resistivity reaches to allowable level. The equation for calculating the apparent soil resistivity is complicated and time consumed, because it is composed of an infinite integral which includes a zero order Bessel's function of the first kind. In this paper, a fast algorithm for calculating the apparent soil resistivity of horizontal multilayer earth structure is proposed using exponential sampling method.

Apparent Soil Resistivity Calculation Using Complex Image Method (복소수이미지 방법을 이용한 겉보기 대지저항률 계산)

  • Kim, Ho-Chan;Boo, Chang-Jin;Kang, Min-Jae
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.318-321
    • /
    • 2019
  • The apparent soil resistivity is used for estimating multilayer soil parameters, such as, layer's depth and soil resistivity. The apparent soil resistivity can be measured, and also can be calculated if soil parameters are given, becacuse the apparent soil resistivity is a function of these parameters. Therefore, any optimization algorithms can be used to find these parameters which make the calculated apparent soil resistivity close to the measured one. The equation for calculating the apparent soil resistivity is complicated and time consumed, because it is composed of an infinite integral which includes a zero order Bessel's function of the first kind. In this paper, a fast algorithm for calculating the apparent soil resistivity of horizontal multilayer earth structure has been presented using complex image method.

Prediction of Continuous Reactors Performance Based on Batch Reactor Deactivation Kinetics Data of Immobilized Lipase

  • Murty, V.Ramachandra;Bhat, Jayadev;Muniswaran, P.K.A.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.4
    • /
    • pp.225-230
    • /
    • 2002
  • Experiments on deactivation kinetics of immobilized lipase enzyme from Candida cyl-indracea were performed in stirred bath reactor using rice bran oil as the substrate and temperature as the deactivation parameter. The data were fitted In first order deactivation model. The effect of temperature on deactivation rate was represented by Arrhenius equation. Theoretical equations were developed based on pseudo-steady state approximation and Michaelis -Menten rate expression to predict the time course of conversion due to enzyme deactivation and apparent half-life of the immobilized enzyme activity in PFR and CSTH under constant feed rate polity for no diffusion limitation and diffusion limitation of first order. Stability of enzyme in these continuous reactors was predicted and factors affecting the stability were analyzed.

A Study on the Catalytic Activity of Nontoxic Organometallic Compound in Esterification Reaction between Succinic Acid and 1,4-Butanediol (Succinic Acid과 1,4-butanediol의 에스테르화반응에서 무독성 유기금속 화합물의 촉매 활성에 관한 연구)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.6-13
    • /
    • 2010
  • Esterification reaction between succinic acid and 1,4-butanediol was kinetically investigated in the presence of nontoxic organometallic compound catalyst(ESCAT-100E) at $150-190^{\circ}C$. The reaction rates measured by the amount of distilled water from the reaction vessel. The Esterification reaction was carried out under the first order conditions respect to the concentration of reactants, respectively. The overall reaction order was 2nd. The linear relationship was shown between apparent reaction rate constant and reciprocal absolute temperature. By the Arrhenius plot the activation energy have been calculated as 376.13 kJ/mol under nontoxic organometallic compound catalyst and also apparent reaction rate constant, k' was found to obey first kinetics with respect to the concentration of catalyst.

Effect of Monobutyl Tinoxide Catalyst in Esterification Reaction between Succinic Acid and 1,4-butanediol (Succinic Acid과 1,4-butanediol간의 에스테르화반응에서 Monobutyl Tinoxide 촉매의 영향)

  • Park, Keun-Ho;Kim, Duck-Sool
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.362-369
    • /
    • 2009
  • Esterification reaction between succinic acid and 1,4-butanediol was kinetically investigated in the presence of monobutyl tinoxide catalysts at $150{\sim}190^{\circ}C$. The reaction rates measured by the amount of distilled water from the reaction vessel. The esterification reaction was carried out under the first order conditions with respect to the concentration of reactants, respectively. The overall reaction order was 2nd. The linear relationship was shown between apparent reaction rate constant and reciprocal absolute temperature. By the Arrhenius plot the activation energy have been calculated as 87.567 kJ/mol under monobutyl tinoxide catalyst and also apparent reaction rate constant, k' was found to obey first kinetics with respect to the concentration of catalyst.

Absorption of Itraconazole from Rat Small Intestine (이트라코나졸의 랫트 소장으로부터의 흡수)

  • Kim, Young-Hwa;Lee, Yong-Suk;Park, Gee-Bae;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.4
    • /
    • pp.215-222
    • /
    • 1991
  • The absorption characteristics of itraconazole, which is an antifungal agent, from intestinal segments in the anesthetized rat i1l situ were investigated in order to design an effective oral drug delivery system. The pH-solubility profile of itraconazole, the rate and extent of absorption of itraconazole, the optimal absorption site(s) of itraconazole and the absorption enhancing effect of sodium cholate on itraconazole were examined in the present study. In situ single-pass perfusion method and recirculating perfusion technique using duodenum(D), jejunum(J) and ileum(I) were employed for the calculation of apparent permeability(Pe) and apparent first-order rate constant(Kobs). respectively. The results of this study were as follows; (1) Itraconazole showed appreciable aqueous solubility only at pH values of below 2.0. (2) pe(cm/sec) decreased in the following order: $D(10.24{\pm}1.78{\times}10^{-4})>J(8.86{\pm}0.79{\times}10^{-4})>I(3.78{\pm}0.13 X 10^{-4})$. (3) $Kobs(min^{-1})$ decreased in the following order: $J(17.12{\pm}3.19{\times}10^{-3})>D(13.37{\pm}0.6{\times}10^{-3})>I(11.05{\pm}0.91{\times}10^{-3})$. (4) The solubility of itraconazole markedly increased with the increase of the concentration of sodium cholate. (5) The addition of 10 mM sodium cholate significantly increased the apparent first-order rate constant of itraconazole in the ileum by a factor of 6.8.

  • PDF

A Study on the Stability of Carbamide Peroxide Solution (Carbamide Peroxide 용액(溶液)의 안정성(安定性))

  • Rhee, Gye-Ju;Yu, Byung-Sul
    • YAKHAK HOEJI
    • /
    • v.28 no.6
    • /
    • pp.299-303
    • /
    • 1984
  • In order to eluciate the effect of humidity and organic solvent on the decomposition of carbamide peroxide, the kinetic study was carried out. The carbamide peroxide was prepared from urea and 30%-hydrogen peroxide. The accelerated stability analysis for carbamide peroxide crystal in various relative humidity, and for 10%-carbamide peroxide solution of organic solvents were investigated. Both humidity and temperature were important factors influencing the decomposition rate of carbamide peroxide crystal. The higher the humidity and temperature, the greater was the reaction rate. The breakdown rate of crystal was observed as an apparent zero-order, and was faster than the rate of decomposition in dilute propylene glycol, glycerine or sorbitol solutioos which were measured as an apparent first-order reaction. The more dilute to 10% the organic solvents of 10%-carbamide peroxide, the slower was breakdown rate. It is, therefore, useful in the aspects of stability and economics to substitute solvent of carbamide peroxide topical solution (USP XXI) with 10%-propylene glycol or glycerine instead of anhydrous glycerine.

  • PDF

A Study on the Transesterification Reaction Between Methyl Methacylate and Diethanolamine (메틸메타크릴레이트와 디에탄올아민과의 에스테르 교환반응에 관한 연구)

  • Sohn, Byoung-Chung;Park, Keun-Ho;Jeong, Soon-Wook;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.41-47
    • /
    • 1986
  • The transesterification reaction between diethanolamine and methyl-methacrylate was kinetically investigated in the presence of various metal acetate catalysts at $120^{\circ}C$. The quantity of methylmethacrylate reacted in the reaction flask was measured by gas chromatography and liquid chromatography, and the reaction rate was investigated by measuring of the quantity of products and reactnts under various catalysts. The transesterification reaction was carried out in the first order reaction kinetics with respect to the concentration of diethanolamine and methylmethacrylate, respectively. The apparent rate constant was found to obey first-order kinetics with respect to the concentration of catalyst. The linear relationship was shown between apparent rate constant and reciprocal absolute temperature, and by the Arrhenius plot, the activation energy has been calculated as 11.08 Kcal with zinc acetate catalyst, 17.99 Kcal without catalyst. The maximum reaction rate was appeared at the range of 1.4 to 1.6 of electronegativity of metal ions and instability constant of metal acetates.

Studies on the Formation of Inclusion Complex between Omeprazole and $\beta$-cyclodextrin (오메프라졸과 베타-시클로덱스트린과의 포접화합물 형성에 따른 특성)

  • 소재일;이창현;이계주
    • YAKHAK HOEJI
    • /
    • v.35 no.5
    • /
    • pp.372-378
    • /
    • 1991
  • To increase the stability and bioavailability of Omeprazole(OMP), which is used newly as a proton-pump inhibitor, inclusion complex of OMP with $\beta$-cyclodextrin($\beta$-CD) was prepared by coprecipitation method and its characteristics were ascertained by means of solubility test, DSC, IR, and the accelerated stability analysis. The type of OMP inclusion complex is classified as Bs-type on phase solubility diagram, and the stoichiometric ratio of OMP: $\beta$-CD complex is 1:2 and formation constant is 80.82/mole. The solubility of the complex could be increased remarkably by complexation compare with OMP. Degradation process of both OMP and OMP complex followed apparent first-order kinetics, of which degradation rate constants and activation energies are k$_{25}$=8.1$\times$10$^{-4}$/day, E$_{a}$=22 Kcal/mole (OMP), and k$_{25}$=4.65$\times$10$^{-6}$/day, E$_{a}$=35 Kcal/mole (complex), respectively. These results show the increase of the stability and solubility of OMP markedly, therefore it is believed that the improvement of stabilization for OMP by inclusion complexation might be practically available.

  • PDF

A Study on the Transesterification Reaction between Methyl Methacrylate and Diethanolamine (II) (메틸메타크릴레이트와 디에탄올아민과의 에스테르 교환반응에 관한 연구(II))

  • Sohn, Byoung-Chung;Park, Keun-Ho;Jeong, Soon-Wook
    • Journal of the Korean Applied Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.67-71
    • /
    • 1987
  • The transesterification reaction between diethanolamine and methyl methacrylate was kinetically investigated in the presence of various metal acetate catalysts at $120^{\circ}C$. The amount of reacted methyl methacrylate was measured by gas chromatography and liquid chromatography, and the reaction rate also measured from the amount of reaction products and reactants under each catalyst. The transesterification reaction was carried out in the first order with respect to the concentration of diethanolamine and methyl methacrylate, respectively. The over-all order is 2nd. The apparent rate constant was found to obey first-order kinetics with respect to the concentration of catalyst. The maximum reaction rate was appeared at the range of 1.4 to 1.6 of electronegativity of metal ions and instability constant of metal acetates.