• Title/Summary/Keyword: apoptotic cells

Search Result 2,157, Processing Time 0.027 seconds

Promising Therapeutic Effects of Embryonic Stem Cells-Origin Mesenchymal Stem Cells in Experimental Pulmonary Fibrosis Models: Immunomodulatory and Anti-Apoptotic Mechanisms

  • Hanna Lee;Ok-Yi Jeong;Hee Jin Park;Sung-Lim Lee;Eun-yeong Bok;Mingyo Kim;Young Sun Suh;Yun-Hong Cheon;Hyun-Ok Kim;Suhee Kim;Sung Hak Chun;Jung Min Park;Young Jin Lee;Sang-Il Lee
    • IMMUNE NETWORK
    • /
    • v.23 no.6
    • /
    • pp.45.1-45.22
    • /
    • 2023
  • Interstitial lung disease (ILD) involves persistent inflammation and fibrosis, leading to respiratory failure and even death. Adult tissue-derived mesenchymal stem cells (MSCs) show potential in ILD therapeutics but obtaining an adequate quantity of cells for drug application is difficult. Daewoong Pharmaceutical's MSCs (DW-MSCs) derived from embryonic stem cells sustain a high proliferative capacity following long-term culture and expansion. The aim of this study was to investigate the therapeutic potential of DW-MSCs in experimental mouse models of ILD. DW-MSCs were expanded up to 12 passages for in vivo application in bleomycin-induced pulmonary fibrosis and collagen-induced connective tissue disease-ILD mouse models. We assessed lung inflammation and fibrosis, lung tissue immune cells, fibrosis-related gene/protein expression, apoptosis and mitochondrial function of alveolar epithelial cells, and mitochondrial transfer ability. Intravenous administration of DWMSCs consistently improved lung fibrosis and reduced inflammatory and fibrotic markers expression in both models across various disease stages. The therapeutic effect of DW-MSCs was comparable to that following daily oral administration of nintedanib or pirfenidone. Mechanistically, DW-MSCs exhibited immunomodulatory effects by reducing the number of B cells during the early phase and increasing the ratio of Tregs to Th17 cells during the late phase of bleomycin-induced pulmonary fibrosis. Furthermore, DW-MSCs exhibited anti-apoptotic effects, increased cell viability, and improved mitochondrial respiration in alveolar epithelial cells by transferring their mitochondria to alveolar epithelial cells. Our findings indicate the strong potential of DW-MSCs in the treatment of ILD owing to their high efficacy and immunomodulatory and anti-apoptotic effects.

A Morphological Study on the Granulosa Cell Apoptosis and Macrophages during Follicular Atresia in Pig Ovary (돼지난소에서 난포폐쇄시 과립층세포의 아포토시스와 대식세포에 관한 형태학적 연구)

  • Park, C.S.;Han, S.R.;Kim, S.I.;Cho, K.J.;Kim, W.S.;,
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.571-584
    • /
    • 2004
  • It is known widely that granulosa cell apoptosis leads follicular atresia and macrophages exert their effects directly and/or indirectly from the initiation to the completion of follicular atresia by phagocytosis of apoptotic bodies and secretion of various cytokines. However, the site of initiation, propagation routes and the elimination methods of apoptotic bodies, and the time and methods of penetration of macrophages into the follicles are not known completely. Using pig(Yorkshire-breed) ovary, immunohistochemical studies with TUNEL for apoptotic bodies and pig macrophage monoclonal antibody 4E9 for macrophages, and light and transmission electron microscopic observations were performed. In the pig, follicular atresia began with the granulosa cell apoptosis, and the apoptosis of theca intema cells occured at the same time. The apoptosis of granulosa cells initiated randomly within the granulosa cell layer and propagated rapidly into the whole layer. Ultrastructura1ly, apoptotic granulosa cells showed characteristic pyknotic and deformed nucleus and intracytoplasmic vesicles. Apoptotic bodies were eliminated by intact granulosa cells and macrophages. Intact granulosa cells ingested apoptotic bodies transiently, soon after they fell into the apoptosis. Finally, apoptotic bodies and degenerated oocyte were phagocytosed by macrophages. Macrophages entered the ovarian follicle at the time of initiation of granulosa cell apoptosis, and migrated with the progression of apoptosis. By elimination of theca cells, macrophages contributed the completion of follicular atresia These results will provide valuable informations on the study of the interrelation between macrophage and ovarian follicular atresia.

Ethanol Extract of Smilax glabra Induces Apoptotic Cell Death in Human YD10B Oral Squamous Cell Carcinoma Cells

  • Young Sun Hwang
    • Journal of dental hygiene science
    • /
    • v.23 no.3
    • /
    • pp.216-224
    • /
    • 2023
  • Background: Smilax glabra has various pharmacological activities and is widely used as a herbal medicine. Although the incidence of oral cancer is low, the recurrence rate is high, and the 5-year survival rate is poor. It is necessary to search for anticancer drugs that increase the effect of cancer chemotherapy on heterogeneous oral tissues and reduce the side effects on normal cells. This study aimed to investigate the effects and mechanism of ethanol extract of Smilax glabra (EESG) as an anticancer drug for oral cancer. Methods: Smilax glabra root components extracted with 70% ethanol were used to analyze their effects on cancer cells. A 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide assay was performed for cytotoxicity analysis. Flow cytometry was performed to determine the cell cycle phase distribution. To observe apoptotic cells, terminal deoxynucleotidyl transferase dUTP nick end labeling and γH2AX were detected by fluorescence microscope. The protein levels of cleaved PARP and caspase were analyzed using western blotting. The activation of procaspase-3 was confirmed by measuring caspase-3 activity. Results: EESG was no cytotoxic to normal gingival fibroblast but was high in YD10B oral squamous cell carcinoma (OSCC) cells. EESG treatment increased the subdiploid DNA content of YD10B cells by assessing DNA content distribution. Chromatin condensation and DNA strand breaks increased in YD10B cells treated with EESG. EESG-treated YD10B cells had high Annexin V and low propidium iodide levels, confirming that early apoptosis was induced. In addition, increased levels of γH2AX foci, a marker of DNA damage, were observed in the nuclei of EESG-treated YD10B cells. The EESG-treated YD10B cells also exhibited decreased procaspase-3 and procaspase-9 levels, increased PARP cleavage and caspase-3 activity. Conclusion: These results indicate that EESG inhibited cancer cell proliferation by inducing apoptosis in YD10B OSCC cells.

Cytotoxic and Apoptotic Activities of Tussilago farfara Extract in HT-29 Human Colon Cancer Cells

  • Lee, Mi-Ra;Cha, Mi-Ran;Jo, Kyung-Jin;Yoon, Mi-Young;Park, Hae-Ryong
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.308-312
    • /
    • 2008
  • The flower buds of Tussilago farfara (TF) have been traditionally used in oriental medicine for the treatment of bronchitis and asthma. In our study, the primary objective was to determine the mechanisms that are inherent to TF-induced cytotoxicity and apoptosis, using the methanolic extract of TF (TFM) in HT-29 human colon cancer cells. We found that TFM-induced induced cytotoxicity in HT-29 cells in a dose-dependent manner. This effect was verified via an MTT reduction assay, an lactate dehydrogenase (LDH) release assay, and a colony formation assay. Interestingly, we also detected apoptotic bodies on Hoechst staining, and attempted to determine whether TFM-induced apoptosis involved the caspase pathway using a caspase-3/7 activity assay. Overall, the results indicate that TFM contain chemotherapeutic agents and potential candidates use for against human colon cancer cells.

Excretory-secretory product of newly excysted metacercariae of Paragonimus westermani directly induces eosinophil apoptosis

  • Shin, Myeong-Heon
    • Parasites, Hosts and Diseases
    • /
    • v.38 no.1
    • /
    • pp.17-23
    • /
    • 2000
  • Eosinophils are important effector cells in host defense against parasites. Excretory-secretory product (ESP) produced by helminthic worms plays important roles in the uptake of nutrients, migration in the host tissue, and in immune modulation. However little is known about the ability of the ESP to directly trigger eosinophil apoptosis. This study investigated whether the ESP of newly excysted metacercariae of Paragonimus westermani could induce apoptosis in human eosinophils. Apoptosis was assayed by staining the cells with FITC-annexin V, and the cells were analyzed by flow cytometry. It was found that the ESP of newly excysted metacercariae of P. westemani induced a direct time- and concentration-dependent increase in the rate of constitutive apoptosis in mature human eosinophils. Eosinophil apoptosis was first apparent 3 hr after treatment with the ESP and continued to increase after 6 hr of incubation with respect to the cells cultured in the absence of the ESP. While only 2.8% of the eosinophils incubated in the medium for 3 hr were apoptotic, 7.6%, 10.9% and 22.6% of the eosinophils treated with 10. 30 and $100{\;}\mu\textrm{g}/ml$ ESP were apoptotic, respectively. This result suggests that the ESP of newly excysted metacercariae of P. westermani directly induce eosinophil apoptosis, which may be important for the survival of the parasites and the reduction of eosinophilic inflammation in vivo.

  • PDF

MDL-12330A potentiates TRAIL-induced apoptosis in gastric cancer cells through CHOP-mediated DR5 upregulation

  • Lim, Sung-Chul;Han, Song Iy
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.397-405
    • /
    • 2017
  • MDL-12330A is a widely used adenylyl cyclase (AC) inhibitor that blocks AC/cAMP signaling. In this study, we demonstrated a novel antitumor activity of this drug in gastric carcinoma (GC) cell lines. In these GC cells, MDL-12330A reduced cell viability and induced cell death in a concentration-dependent manner. At a moderate concentration (${\sim}20{\mu}M$), MDL-12330A mainly induced apoptotic death whereas at concentrations greater than $20{\mu}M$, it increased non-apoptotic cell death. The induction of apoptosis was at least partially regulated by CHOP-mediated DR5 upregulation, as detected by immunoblotting and gene interference assays. More importantly, low concentrations of MDL-12330A effectively enhanced recombinant human tumor necrosis factor (TNF)-related apoptosis-inducing ligand (rhTRAIL)-induced apoptosis and clonogenicity in these gastric cancer cells. This study demonstrates a possible role of MDL-12330A as a potential sensitizer to TRAIL, and suggests a novel therapeutic strategy targeting gastric cancer cells.

Apoptotic Effect of Phellodendri Cortex Water Extract on MIA PaCa-2 Cells (췌장암 세포주 MIA PaCa-2에서 황백 물 추출물에 의한 Apoptosis 유도 및 작용기전)

  • Lee, In Young;Jeong, Hwang San;Won, Jin Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.202-211
    • /
    • 2013
  • The purpose of this study is to investigate the apoptotic effect of Phellodendri Cortex water extract (PCWE) on pancreatic cancer cells and to find out the regulating mechanisms. Human-derived pancreatic cancer cell line, MIA PaCa-2 cells were treated by PCWE with various concentrations and the cytotoxicity was determined by MTT assay. The activation of Annexin V, DNA fragmentation, cell cycle arrest and caspase activation were observed to investigate the role of PCWE in pancreatic cancer cells. Also, to find out the regulating mechanisms, we examined the ROS production. The treatment of PCWE induced the cell death in both concentration and time dependent manner. The treatment of PCWE also increased the expression of Annexin V, DNA fragmentation, cell cycle arrest, and cleavage of caspase, which means cell-death PCWE induced was apoptosis but not necrosis. The ROS production was increased by PCWE treatment and the blockade of ROS inhibited the PCWE-induced cell death. These results could suggest that PCWE induced apoptosis via ROS release in pancreatic cancer cell.

The Effect of Overexpression of Rat Clusterin in L929 Fibroblasts

  • PARK , JUNG-HYUN;JU, SUNG-KYU;PARK, JEE-SUN;PARK, YOO-KYOUNG;KANG, MYUNG-HEE;YOU, KWAN-HEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1333-1337
    • /
    • 2004
  • Oxidants such as hydrogen peroxide are powerful inducers of cell damage, ageing, and apoptosis. Since clusterin, a 75-80 kDa mammalian glycoprotein, is frequently found to be inducible in apoptotic cells and tissues, this study inquired into whether this would be a protective mechanism against further cell death. The aim was to find out whether overexpression of clusterin could protect cells from oxidant­induced stress and apoptosis. To clarify this issue, we generated and analyzed stable cell lines expressing fusion proteins of a rat clusterin with an enhanced green fluorescent protein (EGFP). When treated with varying concentrations of hydrogen peroxides, clusterin transfectants indeed showed increased resistance to apoptosis and exhibited a much higher survival rate than mock-transfected cells. On the other hand, neither intracellular re-distribution nor local concentration of clusterin-EGFP was observed, which leaves the question open about its anti-apoptotic mechanism. In conclusion, the overexpression of clusterin provides a means for protecting cells against oxidative stress and subsequent cell death.

A Conclusive Review on Amyloid Beta Peptide Induced Cerebrovascular Degeneration and the Mechanism in Mitochondria

  • Merlin, Jayalal L.P.
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.125-137
    • /
    • 2013
  • Promising evidence suggests that amyloid beta peptide ($A{\beta}$), a key mediator in age-dependent neuronal and cerebrovascular degeneration, activates death signalling processes leading to neuronal as well as non-neuronal cell death in the central nervous system. A major cellular event in $A{\beta}$-induced apoptosis of non-neuronal cells, including cerebral endothelial cells, astrocytes and oligodendrocytes, is mitochondrial dysfunction. The apoptosis signalling cascade upstream of mitochondria entails $A{\beta}$ activation of neutral sphingomyelinase, resulting in the release of ceramide from membrane sphingomyelin. Ceramide then activates protein phosphatase 2A (PP2A), a member in the ceramide-activated protein phosphatase (CAPP) family. PP2A dephosphorylation of Akt and FKHRL1 plays a pivotal role in $A{\beta}$-induced Bad translocation to mitochondria and transactivation of Bim. Bad and Bim are pro-apoptotic proteins that cause mitochondrial dysfunction characterized by excessive ROS formation, mitochondrial DNA (mtDNA) damage, and release of mitochondrial apoptotic proteins including cytochrome c, apoptosis inducing factor (AIF), endonuclease G and Smac. The cellular events activated by $A{\beta}$ to induce death of non-neuronal cells are complex. Understanding these apoptosis signalling processes will aid in the development of more effective strategies to slow down age-dependent cerebrovascular degeneration caused by progressive cerebrovascular $A{\beta}$ deposition.

Pseudolaric Acid B Induces Apoptosis Through p53 and Bax/Bcl-2 Pathways in Human Melanoma A375-S2 Cells

  • Gong Xian-Feng;Wang Min-Wei;Tashiro Shin-Ichi;Onodera Satoshi;Ikejima Takashi
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.68-72
    • /
    • 2005
  • Pseudolaric acid B is a major compound found in the bark of Pseudolarix kaempferi Gordon. In our study, pseudolaric acid B inhibited growth of human melanoma cells, A375-S2 in a time and dose-dependent manner. A375-S2 cells treated with pseudolaric acid B showed typical characteristics of apoptosis including morphologic changes, DNA fragmentation, sub-diploid peak in flow cytometry, cleavage of poly-ADP ribose polymerase (PARP) and degradation of inhibitor of caspase-activated DNase (ICAD). P53 protein expression was upregulated while cells were arrested at the $G_2/M$ phase of the cell cycle. There was a decrease in the expression of anti-apoptotic Bcl-2 and Bcl-xL proteins, whereas pro-apoptotic Bax was increased. The two classical caspase substrates, PARP and ICAD, were both decreased in a time-dependent manner, indicating the activation of downstream caspases.