DOI QR코드

DOI QR Code

A Morphological Study on the Granulosa Cell Apoptosis and Macrophages during Follicular Atresia in Pig Ovary

돼지난소에서 난포폐쇄시 과립층세포의 아포토시스와 대식세포에 관한 형태학적 연구

  • Park, C.S. (Research Center for Transgenic Cloned Pigs, Chungnam National University) ;
  • Han, S.R. (College of Medicine, Chungnam National Universityv) ;
  • Kim, S.I. (College of Medicine, Chungnam National Universityv) ;
  • Cho, K.J. (College of Medicine, Chungnam National Universityv) ;
  • Kim, W.S. (College of Medicine, Chungnam National Universityv) ;
  • ,
  • 박창식 (충남대학교 형질전환복제돼지연구센터) ;
  • 한승로 (충남대학교 의과대학) ;
  • 김수일 (충남대학교 의과대학) ;
  • 조근자 (충남대학교 의과대학) ;
  • 김원식 (충남대학교 의과대학) ;
  • Published : 2004.08.31

Abstract

It is known widely that granulosa cell apoptosis leads follicular atresia and macrophages exert their effects directly and/or indirectly from the initiation to the completion of follicular atresia by phagocytosis of apoptotic bodies and secretion of various cytokines. However, the site of initiation, propagation routes and the elimination methods of apoptotic bodies, and the time and methods of penetration of macrophages into the follicles are not known completely. Using pig(Yorkshire-breed) ovary, immunohistochemical studies with TUNEL for apoptotic bodies and pig macrophage monoclonal antibody 4E9 for macrophages, and light and transmission electron microscopic observations were performed. In the pig, follicular atresia began with the granulosa cell apoptosis, and the apoptosis of theca intema cells occured at the same time. The apoptosis of granulosa cells initiated randomly within the granulosa cell layer and propagated rapidly into the whole layer. Ultrastructura1ly, apoptotic granulosa cells showed characteristic pyknotic and deformed nucleus and intracytoplasmic vesicles. Apoptotic bodies were eliminated by intact granulosa cells and macrophages. Intact granulosa cells ingested apoptotic bodies transiently, soon after they fell into the apoptosis. Finally, apoptotic bodies and degenerated oocyte were phagocytosed by macrophages. Macrophages entered the ovarian follicle at the time of initiation of granulosa cell apoptosis, and migrated with the progression of apoptosis. By elimination of theca cells, macrophages contributed the completion of follicular atresia These results will provide valuable informations on the study of the interrelation between macrophage and ovarian follicular atresia.

난포폐쇄는 과립층세포와 난포막세포들의 아포토시스에 의해 이루어지고, 이 과정에 대식 세포는 아포토시스 소체들의 포식작용과 각종 사이토카인 분비를 통해 난포폐쇄의 개시와 완성에 직, 간접적으로 관여함이 널이 보고되어 있다. 그러나 난포 폐쇄시 일어나는 아포노시스가 어디에서부터 개시되고, 어떻게 파급되는지, 아포토시스 소체의 제거방법, 퇴화된 난모세포의 제거 방법, 이들을 제거하는 대식세포의 난포내 진입 시기와 방법 등에 대해서는 아직 확실히 밝혀져 있지 않다. 이에 저자들은 가임기 돼지(Yorkshire-breed)를 실험동물로 난소내 난포의 광학현미경적 및 투과전자현미경적 관찰과 TUNEL 및 돼지 대식세포 단크론항체 4E9를 이용한 면역조직화학적 방법으로 본 연구를 실시하였다. 본 연구 결과, 난포 폐쇄는 과립층세포의 아포토시스로부터 개시되고 그 시기에 난포막 속층 세포들의 아포토시스도 같이 일어나는 것으로 관찰되었다. 과립층세포의 아포토시스는 당해 세포의 과립층내 위치에 관계없이 핵농축으로부터 시작되고 짧은 시간안에 과립층 전체로 파급되고 난모세포를 둘러싸고 있는 괴립층세포의 아포토시스가 가장 마지막에 일어나는 것으로 보인다. 난포 과립층세포의 아포토시스는 핵의 농축과 변형, 세포내 소포들의 출현이 특징적이었고, 아포토시스 소체들은 인접한 정상적인 과립층세포와 대식세포들에 의해 포식되었다. 아포토시스 소체들을 포식한 정상 괴립층세포는 자신도 곧 아포토시스를 일으켜, 이들의 포식작용은 일시적인 것으로 생각된다. 또한 모든 아포토시스 소체들과 퇴화된 난모세포는 대식 세포들이 제거함을 알 수 있었다. 대식세포는 아포토시스의 개시와 함께 난포내로 진입하고, 그 진행과 함께 난포내 모든 부위로 이동하여 아포토시스 소체들과 퇴화 난모세포를 제거하는 것으로 보인다. 처음부터 난포막에 있던 일부 대식세포들은, 아포토시스를 일으켜 난포 바닥막을 와해시킨 난포막세포들의 아포토시스 소체들을 제거하여, 폐쇄된 난포의 난소 실질화를 통해 난포 폐쇄의 완성에 기여하는 것으로 보인다.

Keywords

References

  1. Abe, K. and Watanabe, S. 1995. Apoptosis of mouse pancreatic acinar cells after duct ligation. Arch. HistoI. CytoI. 58;221-229.
  2. Amsterdam, A, Dantes, A, Hosokawa, K, SchereLevy, C. P., Kotsuji, F. and Aharoni, D. 1998. Syeroids ado aging : Steroid regulation during apoptosis of ovarian follicular cells. Steroids, 63:314-318.
  3. Arai, H. 1920. On the postnatal development of the ovary(albino rats), with special reference to the number of ova. Am. J. Anat. 27:405-462.
  4. Araki, M., Fukumatsu, Y., Katabuchi, H., Shultz, L. D., Takahashi, K and Okamura, H. 1996. Follicular development and ovulation in macrophage colony-stimulating factor-deficient mice homozygous for the osteopetrosis mutation. BioI. Reprod. 54:478-484.
  5. Berndt, A, Heller, M., Methner, U., Kosmehl, H. and Mueller, G. 2000. Monoclonal antibodies against porcine macrophages. Vet. ImmunoI. ImmunopathoI. 74:163-177.
  6. Brannstrom, M., Mayrhofer, G. and Robertson, S. A. 1993. Localization of leukocyte subsets in the rat ovary during the periovulatory period. BioI. Reprod. 48:277-286. https://doi.org/10.1095/biolreprod48.2.277
  7. Bukovsky, A., Chen, T. T., Wirnalasena, J. and Caudle, M. R. 1993. Cellular localization of luteinizing hormone receptor immunoreactivity in the ovaries of immature, gonadotropin-primed and normal cycling rats. BioI. Reprod. 48:1367-1382. https://doi.org/10.1095/biolreprod48.6.1367
  8. Bukovsky, A., Caudle, M. R., Keenan, A., Wimalasena, J., Foster, J. S. and van Meter S. E. 1995. Quantitative evaluation of the cell cyclerelated retinoblastoma protein and localization of Thy-1 differentiation protein and macrophages during follicular development and atresia, and in human corpora lutea. BioI. Reprod. 52:776-792.
  9. Clarke, P. G. H. 1991. Developmental cell death: morphological diversity and multiple mechanisms. Anat. EmbryoI. 181;195-213.
  10. Compton, M. M. and Cidlowski, J. A 1986. Rapid in vivo effects of glucocorticoids on the integrity of rat lymphocyte genomic deoxyribonucleic acid. Endocrinology, 118:38-45.
  11. Cope, F. O. and Willie, J. J. 1991. Carcinogenesis and apoptosis: Paradigms and paradoxes in cell cycle and differentiation. In: Apoptosis: The molecular basis of cell death, Tomei, L. D. and F. O. Cope(ED.), Cold Spring Harbor Laboratory Press, New York, pp. 61-86.
  12. Dijkstra, C. D., Dopp, E. A, Joling, P. and Kraal, G. 1985. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. ImmunoI. 54:589-599.
  13. Domenech, N., Rodriquez-Carreno, M P., Filgueira, P., Alvarez, B., Chamorro, S. and Dominguez, J. 2003. Identification of porcine macrophages with monoclonal antibodies in formalin-fixed, paraffinembedded tissues. Vet. InnmmoI. InnmmopathoI. 94:77-81.
  14. Foghi, A, Teerds, K J., van der Donk, H. and Dorrington, J. 1997. Induction of apoptosis in rat thecal/interstitial cells by transforming growth factor $\alpha$ plus transforming growth factor $\beta$ in vitro. J. EndocrinoI. 153:169-178.
  15. Fukumatsu, Y., Katabuchi, H., Naito, M., Takeya, M., Takahashi, K and Okamura, H. 1992. Effect of macrophage on proliferation of granulosa cells in the ovary in rats. J. Reprod. Fert. 96:241-249.
  16. Fukuoka, M., Yasuda, K, Taii, S., Takakura, K. and Mori, T. 1989. Interleukin-1 stimulates growth and inhibits progesterone secretion in cultures of porcine granulosa cells. Endocrinology, 124:884-890.
  17. Garris, D. R. and Foreman, D. 1984. Follicular growth and atresia during the last half of the luteal phase of the guinea pig estrous cycle : relation to serum progesterone and estradiol levels and uteroovarian blood flow. Endocrinology 115:73-77.
  18. Gaytan, F., Morales, C., Bellido, C., Aguilar, E. and Sanchez-Criado, J. E. 1998. Ovarian follicle macrophages: is follicular atresia in the immature rat a macrophage-mediated event? BioI. Reprod. 58(1):52-59.
  19. Gougeon, A. 1996. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocrine Rev. 17:121-155.
  20. Halme, J., Hammond, M. G., Syrop, C. H. and Talbert, L. M. 1985. Peritoneal macrophages modulate human granulosa-luteal cell progesterone production. J. Clinical Endoclinol. & Metabol. 61:912-916. https://doi.org/10.1210/jcem-61-5-912
  21. Han, H., Iwanaga, T., Uchiyama, Y. and Fujita, T. 1993. Aggregation of macrophages in the tips of intestinal villi in guinea pigs: their possible role in the phagocytosis of effete epithelial cells. Cell Tiss. Res. 271;407-419.
  22. Hirshfield, A. N. and Midgley, J. A. R. 1978. Morphometric analysis of follicular development in the rat. BioI. Reprod. 19:606-611.
  23. Hoek, A, Allaerts, W., Leenen, P. J. M, Shoemaker, J. and Drexhage, H. A. 1997. Dendritic cells and macrophages in the pituitary and gonads. Evidence for their role in the fine regulation of the reproductive endocrine response. Eur. J. Endocrinol. 136:8-24. https://doi.org/10.1530/eje.0.1360008
  24. Hughes, F. M. and Gorospe, W. C. 1991. Biochemical identification of apoptosis(programmed cell death) in granulosa cells : Evidence for a potential mechanism underlying follicular atresia. Endocrinology, 129(5):2415-2422.
  25. Ikeda, K., Kinoshita, H., Hirohashi, K., Kubo, S. and Kaneda, K. 1995. The ultrastructure kinetics and intralobular distribution of apoptotic hepatocytes after portal branch ligation with special reference to their relationship to necrotic hepatocytes. Arch. Histol. Cytol. 58;171-184.
  26. Inoue, S., Watanabe, H., Saito, H., Hiroi, M. and Tonosaki, A. 2000. Elimination of atretic follicles from the mouse ovary: a TEM and immunohistochemical study in mice. J. Anat. 196:103-110.
  27. lsobe, N. and Yoshimura, Y. 2000. Localization of apoptotic cells in the cystic ovarian follicles of cows: a DNA-end labeling histochemical study. Theriogenology, 53:897-904.
  28. Iwanaga, T., Han, H., Adachi, K. and Fujita, T. 1993. A novel mechanism for disposing of effete epithelial cells in the small intestine of guinea pigs. Gastroenterology, 105;1089-1097.
  29. Kasuya, K. 1995. The processes of apoptosis in follicular epithelial cells in the rabbit ovary, wit special reference to involvement by macrophages. Arch. Histol. Cytol. 58(2):257-264.
  30. Kasuya, K. 1997. Elimination of apoptotic granulosa cells by intact granulosa cells and macrophages in atretic mature follicles of the guinea pig ovary. Arch. Histol. Cytol. 60(2):175-184.
  31. Katabuchi, H., Fukumatsu, Y., Araki, M., Suenaga, Y., Ohtake, H. and Okamura, H. 1996. Role of macrophages in ovarian folliclular development. Horm. Res.(Suppl. 1):45-51.
  32. Kerr, J. F. R., Searle, J., Harmon, B. V. and Bishop, C. J. 1987. Apoptosis. In Perspectives on Mammalian Cell Death, Potten, C. S.(Ed.), Oxford University Press, Oxford-New York-Tokyo, pp. 93-128.
  33. Kim, J. K., Lee., C. J., Song, K. W., Do, B. R. and Woon, Y. D. 1999. $\gamma$ -Radiation accelerates follicular atresia in immature mice. In Vivo, 13:21-24.
  34. Kirsch, T. M., Friedman, A. C., Vogel, R. L. and Flickinger, G. L. 1981. Macropahges in corpora lutea of mice: characterization and effects on steroid secretion. BioI. Reprod. 25:629-638. https://doi.org/10.1095/biolreprod25.3.629
  35. Koike, K., Watanabe, H., Hiroi, M. and Tonosaki, A. 1993. Gap junction of stratum granulosum cells of mouse follicles : immunohistochemistry and electron microscopy. J. Electron Microsc. 42:94-106.
  36. Kraal, G., Shiamatey-Koolma, R., Hoffer, M., Baker, D. and Scheper, R. 1988. Histochemical identification of guinea-pig macrophages by monoclonal antibody MR-1. Immunology, 65:523-528.
  37. Kuryszko, J. and Adamski, R. T. 1987. Macrophages in atretic process of maturing ovarian follicles in mouse. Z. Mikrose-Anat. Forsch, 101:212-220.
  38. Lo, A. C., Houenou, L. J. and Oppenheim, R. W. 1995. Apoptosis in the nervous system: Morphological features, methods, pathology, and prevention. Arch. Histol. Cytol. 58;139-149.
  39. Lockshin, R A. and Zakeri, Z. 1991. Progranuned cell death and apoptosis. In Apoptosis: The molecular Basis of Cell Death, Tomei, L. D. and Cope, F. O. (Ed.), Cold Spring Harbor Laboratory Press, New York, pp. 47-60.
  40. Logothetopoulos, J., Dorrington, J., Bailey, D. and Stratis, M. 1995. Dynamics of follicular growth and atresia of large follicles during the ovarian cycle of the guinea pig : fate of the degenerating follicles, a quantitative study. Anat. Rec. 243:37-48.
  41. Loukides, J. A., Loy, R. A., Edwards, R., Honig, J., Visintin, I. and Polan, M L. 1990. Human follicular fluids contain tissue macrophages. J. Clin. Endocrinol. Metab. 71:1363-1367.
  42. Nakamura, M., Yagi, H., Kayaba, S., Ishii, T., Ohtsu, S., Gotoh, T. and Itoh, T. 1995. Most thymocytes die in the absence of DNA fragmentation. Arch. Histol. Cytol. 58;249-256.
  43. Nitatori, T., Sato, N., Waguri, S., Karasawa, Y., Araki, H., Shibinai, K., Korninami, E. and Uchiyama, Y. 1995. Delayed neuronal death in the CAl pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J. Neurosci. 15;1001-1011.
  44. O'Shea, J. D., Hay, M. F. and Cran, D. G. 1978. Ultrastructural changes in the theca interna during follicular atresia in sheep. J. Reprod. Fertil. 54:183-187. https://doi.org/10.1530/jrf.0.0540183
  45. Pate, J. L. and Keyes, P. L. 2001. Immune cells in the corpus luteum : friends or foes? Reproduction, 122:665-676.
  46. Peluso, J. J., England-Charlesworth, C., Bolender, D. L. and Steger, R W. 1980. Ultrastructural alterations associated with the initiation of follicular atresia Cell Tiss. Res. 211:105-115.
  47. Petrovska, M., Dimitrov, D. G. and Michael, S. D. 1996. Quantitative changes in macrophage distribution in normal mouse ovary over the course of the estrous cycle examined with an image analysis system. A. J. R. I. 36;175-183.
  48. Schulte-Hermann, R, Bursch, W., Kraupp-Grasl, B., Oberhammer, F. and Wagner, A. 1992. 1992 Programmed cell death and its protective role with particular reference to apoptosis. Toxicol. Lett. 6465 (Spec. No.):569-574.
  49. Shibahara, T., Sato, N., Waguri, S., Iwanaga, T., Nakahara, A., Fukutomi, H. and Uchiyama, Y. 1995. The fate of effete epithelial cells at the villus tips of the human small intestine. Arch. Histol. Cytol. 58;205-219.
  50. Singh, N. and Anand, S. 1995. Apoptosis in health and disease. Indian J. Physiol. Pharmacol. 39(2):91-94.
  51. Spanel-Borowski, K. 1981. Morphological investigations on follicular atresia in canine ovaries. Cell Tiss. Res. 214:155-168.
  52. Suzuki, K, Izumi, T., Iwanaga, T., Fujita, T. and Shibata, A. 1995. Multinucleated giant cells undergoing apoptosis in experimental autoimmune myocarditis. Arch. Histol. Cytol. 58;231-241.
  53. Takashita, N., Homma, S., Rotello, R. J., Fernandez, P. A., Yuan, J., Oppenheim, R W. and Yaginuma, H. 1995. Expression of apogens and engulfens during programmed cell death in the nervous system of the chick embryo. Arch. Hisol. Cytol. 58;243-248.
  54. Takeo, Y. and Hokano, M. 1995. An electron microscopic study of apoptosis in the granulosa layer of ovarian follicles in rats treated with continuous illumination. Med. Electron. Microsc. 28:38-44.
  55. Taniguchi, K, Sato, N. and Uchiyama, Y. 1995. Apoptosis and heterophagy of medial edge epithelial cells of the secondary palatine shelves during fusion. Arch. Histol. Cytol. 58;191-203.
  56. Tapanainen, J., Yamamoto, M., Leinonen, P. J., Jaffe, R B. and Tapanainen, P. 1987. Regulation of human granulosa-luteal cell progesterone production and roliferation by gonadotropins and growth factors. Fertil. Steril. 48:576-580 https://doi.org/10.1016/S0015-0282(16)59467-9
  57. Terranova, P. F. 1981. Steroidogenesis in experimentally induced atretic follicles of the hamster : a shift from estradiol to progesterone synthesis. Endocrinology, 108:1885-1890.
  58. Tilly, J. L., Kowalski, K. I., Johnson, A. L. and Hsueh, A. J. W. 1991. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology. 129:2799-2801.
  59. Tsafriri, A. and Braw, R. H. 1984. Experimental approaches to atresia in mammals. Oxf. Rev. Reprod. BioI. 6:226-265.
  60. Ueda, N. and Shah, S. V. 1994. Apoptosis. J. Lab. Clin. Med. 124:169-177.
  61. Uilenbroek, J. T. L., Woutersen, P. J. A. and van der Sehoot, P. 1980. Atresia of preovulatory follicles : gonadotropin-binding and steroidogenic activity. BioI. Reprod. 23:219-229.
  62. Watanabe, H. and Tonosaki, A. 1995. Gap junction in the apoptosis : TEM observation of membrana granulosa cells of mouse ovarian follicle. Prog. Cell. Res. 4:37-40.
  63. Wyllie, A. H. 1980. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature, 284:555-556. https://doi.org/10.1038/284555a0
  64. WyHie, A. H., Kerr, J. F. R, Macaskill, I. A. M. and Currie, A. R. 1973a. Adrenocortical cell deletion: the role of ACTH. J. Pathol. 111;85-94.
  65. Wyllie, A. H., Kerr, J. F. R. and Currie, A. R. 1973b. Cell death in the normal neonatal rat adrenal cortex. J. Pathol. 111;255-261.
  66. Zeleznik, A. 1., Ihrig, L. L. and Bassett, S. G. 1989. Developmental expression of $Ca^{++}/Mg^{++}$-dependent endonuclease activity in rat granulosa and luteal cells. Endocrinology, 125:2218-2220. https://doi.org/10.1210/endo-125-4-2218
  67. 김수일, 한승로, 조근자, 허대영, 이영호, 조문준, 김무강, 김원식. 2002. 방사선 조사에 의한 흰쥐 난포의 퇴축과 난포 세포의 방사선 감수성. 충남의대잡지. 29(1):1-17.
  68. 김원식, 한승로, 김수일, 박창식. 2004. 돼지난소에서 난포 폐쇄와 대식세포에 관한 형태학적 연구. 대한해부학회지 37(1);9-18.
  69. 송근일. 2003. 방사선에 의한 난포 퇴축과 난포 macrophage에 관한 형태학적 연구. 충남대학교 박사학위논문.

Cited by

  1. Detection of Follicular Apoptosis in Water Buffalo (Bubalus bubalis) Ovary by Histology and Nick End Labelling Technique vol.46, pp.1, 2011, https://doi.org/10.1111/j.1439-0531.2009.01569.x