• Title/Summary/Keyword: antioxidant enzymes gene expression

검색결과 81건 처리시간 0.022초

Organism-environment interactions and differential gene expression patterns among open-coastal and estuarine populations of Porphyra umbilicalis Kützing (Rhodophyta) in the Northwest Atlantic

  • Eriksen, Renee L.;Klein, Anita S.
    • Fisheries and Aquatic Sciences
    • /
    • 제21권8호
    • /
    • pp.28.1-28.12
    • /
    • 2018
  • Intertidal macroalgae are exposed to many abiotic stress factors, and they must regularly react to changes in their environment. We used RNA-seq to describe how Porphyra umbilicalis (Rhodophyta) changes gene expression patterns to interact with different habitats. Tissue samples were taken from a typical habitat along the open-coast of the Northwest Atlantic, as well as from a rare, atypical habitat in an estuarine tidal rapid environment. Differential gene expression analyses suggest that pathogic bacteria and viruses may be a significant factor influencing the transcriptome in the human-impacted estuarine environment, but the atypical habitat does not necessarily induce more stress in Porphyra umbilicalis growing there. We found genes related to nitrogen transport are over-expressed in tissue from the open-coastal site compared to those from the estuarine site, where environmental N levels approach hypertrophic levels. Low N levels impede growth, but high levels are toxic to cells, and we use qPCR to show this species regulates expression of a putative high-affinity $NH_4{^+}$ transporter under low and high N conditions. Differences in expression of this transporter in these habitats appear to be inherited from parent to offspring and have general implications for adaptation to habitat in other species that are capable of asexual reproduction, as well as more specific implications for this species' use in aquaculture.

Regulation of Nrf2-Mediated Phase II Detoxification and Anti-oxidant Genes

  • Keum, Young-Sam
    • Biomolecules & Therapeutics
    • /
    • 제20권2호
    • /
    • pp.144-151
    • /
    • 2012
  • The molecular mechanisms by which a variety of naturally-occurring dietary compounds exert chemopreventive effects have been a subject of intense scientific investigations. Induction of phase II detoxification and anti-oxidant enzymes through activation of Nrf2/ARE-dependent gene is recognized as one of the major cellular defense mechanisms against oxidative or xenobiotic stresses and currently represents a critical chemopreventive mechanism of action. In the present review, the functional significance of Keap1/Nrf2 protein module in regulating ARE-dependent phase II detoxification and anti-oxidant gene expression is discussed. The biochemical mechanisms underlying the phosphorylation and expression of Keap1/Nrf2 proteins that are controlled by the intracellular signaling kinases and ubiquitin-mediated E3 ligase system as well as control of nucleocytoplasmic translocation of Nrf2 by its innate nuclear export signal (NES) are described.

Hepatoprotective Effects of Curcumin Against Diethyl Nitrosamine Induced Hepatotoxicity in Albino Rats

  • Kadasa, Naif Mohammed;Abdallah, Haytham;Afifi, Mohamed;Gowayed, Salah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권1호
    • /
    • pp.103-108
    • /
    • 2015
  • Curcumin is widely used as a traditional medicine. This work was aimed to investigate its possible protective effect against chemically induced hepatocellular carcinoma (HCC) in rats. Fifty male albino rats were divided into five groups (n=10, each). The control group received a single dose of normal saline, the diethylnitrosamine (DENA) group received a single intra-peritoneal dose at 200mg/kg body weight, and the 3rd, 4th and 5th groups were given DENA and daily administrated curcunine (CUR) via intra-gastric intubation in doses of 300, 200 and 100 mg/kg b.wt. respectively for 20 weeks. Serum, and liver samples were used for determination of alpha feto-protein (AFP), interleukin-2 (IL-2), interleukine-6 (IL-6), serum liver enzymes (AST, ALT, ALP and GGT) levels as well the activities and gene expression of glutathione peroxidise (GPx), glutathione reductase (GR), catalase (CAT) and super oxide dismutase (SOD). Curcumin significantly lowered the serum levels of AFP, IL-2 and IL-6, ALT, ALT, and malondialdehyde (MDA) as well gene expression of IL-2 and IL-6. In contrast it increased the gene expression and activities of Gpx, GRD, CAT and SOD. The protective effect of CUR against DEN-induced hepatocarcinogenesis in albino rats was proven.

Extracellular Superoxide Dismutase (EC-SOD) Transgenic Mice: Possible Animal Model for Various Skin Changes

  • Kim, Sung-Hyun;Kim, Myoung-Ok;Lee, Sang-Gyu;Ryoo, Zae-Young
    • Reproductive and Developmental Biology
    • /
    • 제30권4호
    • /
    • pp.229-234
    • /
    • 2006
  • We have generated transgenic mice that expressed mouse extracellular superoxide dismutase (EC-SOD) in their skin. In particular, the expression plasmid DNA containing human keratin K14 promoter was used to direct the keratinocyte-specific transcription of the transgene. To compare intron-dependent and intron-independent gene expression, we constructed two vectors. The vector B, which contains the rabbit -globin intron 2, was not effective for mouse EC-SOD overexpression. The EC-SOD transcript was detected in the skin, as determined by Northern blot analysis. Furthermore, EC-SOD protein was detected in the skin tissue, as demonstrated by Western blot analysis. To evaluate the expression levels of EC-SOD in various tissues, we purified EC-SOD from the skin, lungs, brain, kidneys, livers, and spleen of transgenic mice and measured its activities. EC-SOD activities in the transgenic mice skin were approximately 7 fold higher than in wild-type mice. These results suggest that the mouse overexpressing vector not only induces keratinocyte-specific expression of EC-SOD, but also expresses successfully functional EC-SOD. Thus, these transgenic mice appeared to be useful for the expression of the EC-SOD gene and subsequent analysis of various skin changes, such as erythema, inflamation, photoaging, and skin tumors.

Hepaprotective Effect of Standardized Ecklonia stolonifera Formulation on CCl4-Induced Liver Injury in Sprague-Dawley Rats

  • Byun, Jae-Hyuk;Kim, Jun;Choung, Se-Young
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.218-223
    • /
    • 2018
  • The liver is an essential organ for the detoxification of exogenous xenobiotics, drugs and toxic substances. The incidence rate of non-alcoholic liver injury increases due to dietary habit change and drug use increase. Our previous study demonstrated that Ecklonia stolonifera (ES) formulation has hepatoprotective effect against alcohol-induced liver injury in rat and tacrine-induced hepatotoxicity in HepG2 cells. This present study was designated to elucidate hepatoprotective effects of ES formulation against carbon tetrachloride ($CCl_4$)-induced liver injury in Sprague Dawley rat. Sixty rats were randomly divided into six groups. The rats were treated orally with ES formulation and silymarin (served as positive control, only 100 mg/kg/day) at a dose of 50, 100, or 200 mg/kg/day for 21 days. Seven days after treatment, liver injury was induced by intraperitoneal injection of $CCl_4$ (1.5 ml/kg, twice a week for 14 days). The administration of $CCl_4$ exhibited significant elevation of hepatic enzymes (like AST and ALT), and decrease of antioxidant related enzymes (superoxide dismutase, glutathione peroxidase and catalase) and glutathione. Then, it leaded to DNA damages (8-oxo-2'-deoxyguanosine) and lipid peroxidation (malondialdehyde). Administration of ES formulation inhibited imbalance of above factors compared to $CCl_4$ induced rat in a dose dependent manner. Real time PCR analysis indicates that CYP2E1 was upregulated in $CCl_4$ induced rat. However, increased gene expression was compromised by ES formulation treatment. These findings suggests that ES formulation could protect hepatotoxicity caused by $CCl_4$ via two pathways: elevation of antioxidant enzymes and normalization of CYP2E1 enzyme.

Effect of hypoosmotic and thermal stress on gene expression and the activity of antioxidant enzymes in the cinnamon clownfish, Amphiprion melanopus

  • Park, Mi-Seon;Shin, Hyun-Suk;Choi, Cheol-Young;Kim, Na-Na;Park, Dae-Won;Kil, Gyung-Suk;Lee, Je-Hee
    • Animal cells and systems
    • /
    • 제15권3호
    • /
    • pp.219-225
    • /
    • 2011
  • We studied oxidative stress in cinnamon clownfish exposed to hypoosmotic (35 psu ${\rightarrow}$ 17.5 psu and 17.5 psu with prolactin (PRL)) and low temperature ($28^{\circ}C{\rightarrow}24^{\circ}C$ and $20^{\circ}C$) conditions by measuring the expression and activity of Cu/Zn-superoxide dismutase (Cu/Zn-SOD), catalase (CAT), and glutathione peroxidase (GPX). The expression and activity of the antioxidant enzymes were significantly higher after the fish were exposed to $24^{\circ}C$, $20^{\circ}C$, and 17.5 psu, and expression was repressed by PRL treatment. Furthermore, we measured $H_2O_2$ and lipid peroxidation levels and found that they were significantly higher after exposure to the hypoosmotic and low-temperature environments. Additionally, we investigated changes in plasma AST and ALT levels after exposure to low temperature and hypoosmotic stress. These levels increased upon exposure of the clownfish to $24^{\circ}C$, $20^{\circ}C$, and 17.5 psu, but the levels of these parameters decreased in the 17.5 psu with PRL treatment during a salinity change. The results indicate that hypoosmotic and low-temperature conditions induce oxidative stress in cinnamon clownfish and that the parameters tested in this study may be indices of oxidative stress in the cinnamon clownfish.

종대황과 선복화 에탄올 추출물의 인간 피부 세포주인 HaCaT 세포에서 NRF2/ARE에 의존적인 유전자 발현의 유도를 통한 항산화 효과 (Ethanol Extracts of Rheum undulatum and Inula japonica Protect Against Oxidative Damages on Human Keratinocyte HaCaT cells through the Induction of ARE/NRF2-dependent Phase II Cytoprotective Enzymes)

  • 유옥경;이용걸;도기환;금영삼
    • 생명과학회지
    • /
    • 제27권3호
    • /
    • pp.310-317
    • /
    • 2017
  • 본 연구진은 HaCaT-ARE-luciferase 세포를 이용하여 400 여개의 약용식물 에탄올 추출물 중 NRF2/ARE 유도효과가 있는 신규 추출물을 검색하였고 이를 통하여 종대황(Rheum undulatum)과 선복화(Inula japonica)의 주정 추출물이 HaCaT-ARE-luciferase 세포에서 ARE 활성을 강하게 유도하는 것을 관찰하였다. 종대황과 선복화 에탄올 추출물은 HaCaT 세포에서 생존(viability)을 증가시켰고 NRF2/ARE에 의존적인 phase II cytoprotective 효소인 heme oxygenase-1 (HO-1)와 NADPH:quinone oxidoreductase-1 (NQO1)의 전사 및 단백질 발현을 강하게 유도하였다. 또한 종대황과 선복화 추출물은 HaCaT 세포에서 TPA로 유도한 세포 내 활성 산소 및 이를 통하여 생성되는 스트레스 마커인 8-hydroxydeoxyguanosine (8-OH-dG)과 4-hydroxynonenal (4HNE)의 발생을 강하게 억제하였다. 본 연구는 종대황과 선복화의 에탄올 추출물이 인간 피부 세포주인 HaCaT 세포에서 NRF2/ARE에 의존적인 유전자 발현의 유도를 통하여 강력한 항산화 효과를 발휘한다는 것을 증명한다.

Activation of Antioxidant-Response Element (ARE), Mitogen- Activated Protein Kinases (MAPKs) and Caspases by Major Green Tea Polyphenol Components during Cell Survival and Death

  • Chen, Chi;Yu, Rong;Owuor, Edward D.;Kong, A.NTony
    • Archives of Pharmacal Research
    • /
    • 제23권6호
    • /
    • pp.605-612
    • /
    • 2000
  • Green tea polyphenols (GTP) have been demonstrated to suppress tumorigenesis in several chemical-induced animal carcinogenesis models, and predicted as promising chemopreventive agents in human. Recent studies of GTP extracts showed the involvement of mitogen-activated protein kinases (MAPKs) in the regulation of Phase II enzymes gene expression and induction of apoptosis. In the current work we compared the biological actions of five green tea catechins: (1) induction of ARE reporter gene, (2) activation of MAP kinases, (3) cytotoxicity in human hepatoma HepG2-C8 cells, and (4) caspase activation in human cervical squamous carcinoma HeLa cells. For the induction of phase IIgene assay, (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG) potently induced antioxidant response element (ARE)-mediated luciferase activity, with induction observed at 25 $\mu\textrm{m}$with EGCG. The induction of ARE reporter gene appears to be structurally related to the 3-gallate group. Comparing the activation of MAPK by the five polyphenols, only EGCG showed potent activation of all three MAPKs (ERK, JNK and p38) in a dose- and time-dependent manner, whereas EGC activated ERK and p38. In the concentration range of 25 $\mu\textrm{m}$ to 1 mM, EGCG and ECG strongly suppressed HepG2-ARE-C8 cell-growth. To elucidate the mechanisms of green tea polyphenol-induced apoptosis, we measured the activation of an important cell death protein, caspase-3 induced by EGCG, and found that caspase-3 was activated in a dose- and time-dependent manner. Interestingly, the activation of caspase-3 was a relatively late event (peaked at 16 h), whereas activation of MAPKs was much earlier (peaked at 2 h). It is possible, that at low concentrations of EGCG, activation of MAPK leads to ARE-mediated gene expression including phase II detoxifying enzymes. Whereas at higher concentrations of EGCG, sustained activation of MAPKs such as JNK leads to apoptosis. These mechanisms are currently under investigation in our laboratory. As the most abundant catechin in GTP extract, we found that EGCG potently induced ARE-mediated gene expression, activated MAP kinase pathway, stimulated caspase-3 activity, and induced apoptosis. These mechanisms together with others, may contribute to the overall chemopreventive function of EGCG itself as well as the GTP.

  • PDF

Saccharomyces cerevisiae에서 이온화 방사선과 N-acetyl-L-cysteine 처리에 따른 세포 생존과 Superoxide Dismutase와 Catalase 유전자 발현 (Cell Survival and Expression of Superoxide Dismutase and Catalase Genes in Saccharomyces cerevisiae Treated with N-acetyl-L-cysteine and Ionizing Radiation)

  • 박지영;백동원;모하마드닐리;김진규
    • 환경생물
    • /
    • 제29권1호
    • /
    • pp.61-67
    • /
    • 2011
  • NAC는 GSH의 전구물질로, thiol기를 포함하는 항산화제 중 하나로 잘 알려져 있으며, 방사선 조사 시 발생하는 생체 내 영향을 감소시켜 생체 손상의 방호 및 회복에 도움을 주는 방사선 방어제로 이용된다. S. cerevisiae에서 항산화제 NAC를 전처리 함에 따라 이온화 방사선 조사에 따른 효모의 세포사멸 방어효과 및 superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx)와 같은 항산화 효소들의 유전자 발현을 분석하여 NAC의 항산화적 효과를 확인하였다. 효모는 다양한 농도의 NAC 전처리 후 다양한 선량의 이온화 방사선에 조사되었으며, 세포생존율은 세포형성단위(CFU)를 계수해 측정되었고, 항산화 효소의 유전자 발현은 real-time PCR수행 후 분석하였다. 우선적으로 효모에 NAC 처리를 위한 적정농도를 확인하였는데, 35 mM 이상의 NAC 농도에서 효모세포의 성장이 억제 되었다. NAC 전처리는 감마선 조사에 의한 세포사멸을 방어하지 않았으며, 100 Gy 방사선 조사는 항산화 효소들의 유전자 발현을 유도하였다. NAC 전처리 후 항산화 효소들의 유전자 발현은NAC의 농도 증가에 따라 감소하였다. 이러한 결과로,NAC의 높은 농도(35 mM 이상)는 효모세포의 성장을 저해하며, NAC는 이온화 방사선 조사에 따른 세포사멸을 방어할 수 없으나, 생체 내에서 활성산소종을 제거 하여 세포를 보호하는 유용한 항산화제임을 알 수 있었다.

과산화수소로 유도된 산화성 간세포 손상에 대한 소시호탕(小柴胡湯)의 효과 (Effects of Soshiho-tang on Hydrogen Peroxide-induced Oxidative Damage in Hepatocytes)

  • 서상희;오수영;이지선;조원경;김태수;마진열
    • 대한한방내과학회지
    • /
    • 제32권4호
    • /
    • pp.487-496
    • /
    • 2011
  • Objectives : The aim of this study was to investigate the hepatoprotective effect of Soshiho-tang (SSH) in mouse primary liver cells against hydrogen peroxide ($H_2O_2$)-induced oxidative stress. We also elucidated the molecular mechanism of hepatoprotective effect by SSH. Methods : Cell viability, level of ALT, AST and LDH, intracellular ROS level, mRNA expression and activity of antioxidant enzymes were used to evaluate hepatoprotection of SSH against $H_2O_2$. Target gene expressions were analyzed by real-time PCR. Results : Pre-treatment with SSH for 1 hour prevented cytotoxicity against $H_2O_2$. $H_2O_2$-induced ROS level decreased under SSH pre-treatment. mRNA expression of GPx and SOD increased in SSH-treated cells. In addition, HSP72 and HSP40 gene expression were elevated under SSH-treatment. Conclusions : These results indicate that SSH protects mouse primary liver cells from $H_2O_2$-induced oxidative injury. This hepatoprotective activity of SSH is mediated by decreasing intracellular ROS and increasing antioxidant enzyme expression (GPx and SOD) and stress response protein (HSP72 and HSP40).