DOI QR코드

DOI QR Code

Organism-environment interactions and differential gene expression patterns among open-coastal and estuarine populations of Porphyra umbilicalis Kützing (Rhodophyta) in the Northwest Atlantic

  • Eriksen, Renee L. (United States Department of Agriculture-Agricultural Research Service) ;
  • Klein, Anita S. (University of New Hampshire)
  • 투고 : 2017.10.03
  • 심사 : 2018.07.02
  • 발행 : 2018.08.31

초록

Intertidal macroalgae are exposed to many abiotic stress factors, and they must regularly react to changes in their environment. We used RNA-seq to describe how Porphyra umbilicalis (Rhodophyta) changes gene expression patterns to interact with different habitats. Tissue samples were taken from a typical habitat along the open-coast of the Northwest Atlantic, as well as from a rare, atypical habitat in an estuarine tidal rapid environment. Differential gene expression analyses suggest that pathogic bacteria and viruses may be a significant factor influencing the transcriptome in the human-impacted estuarine environment, but the atypical habitat does not necessarily induce more stress in Porphyra umbilicalis growing there. We found genes related to nitrogen transport are over-expressed in tissue from the open-coastal site compared to those from the estuarine site, where environmental N levels approach hypertrophic levels. Low N levels impede growth, but high levels are toxic to cells, and we use qPCR to show this species regulates expression of a putative high-affinity $NH_4{^+}$ transporter under low and high N conditions. Differences in expression of this transporter in these habitats appear to be inherited from parent to offspring and have general implications for adaptation to habitat in other species that are capable of asexual reproduction, as well as more specific implications for this species' use in aquaculture.

키워드

참고문헌

  1. Alexa A, Rahnenfuhrer J. topGO: enrichment analysis for Gene Ontology. 2010;R package version 2.22.0.
  2. Blouin N, Xiugeng F, Peng J, Yarish C, Brawley SH. Seeding nets with neutral spores of the red alga Porphyra umbilicalis (L.) Kutzing for use in integrated multi-trophic aquaculture (IMTA). Aquaculture. 2007;270(1):77-91. https://doi.org/10.1016/j.aquaculture.2007.03.002
  3. Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH. Porphyra: a marine crop shaped by stress. Trends Pl Sci. 2011;16(1):29-37. https://doi.org/10.1016/j.tplants.2010.10.004
  4. Chan CX, Blouin NA, Zhuang Y, Zauner S, Prochnik SE, Lindquist E, Lin S, Benning C, Lohr M, Yarish C. Porphyra (Bangiophyceae) transcriptomes provide insights into red algal development and metabolism. J Phycol. 2012a;48(6):1328-42. https://doi.org/10.1111/j.1529-8817.2012.01229.x
  5. Chan CX, Zauner S, Wheeler G, Grossman AR, Prochnik SE, Blouin NA, Zhuang Y, Benning C, Berg GM, Yarish C. Analysis of Porphyra membrane transporters demonstrates gene transfer among photosynthetic eukaryotes and numerous sodium-coupled transport systems. Plant Physiol. 2012b;158(4):2001-12. https://doi.org/10.1104/pp.112.193896
  6. Collen J, Guisle-Marsollier I, Leger JJ, Boyen C. Response of the transcriptome of the intertidal red seaweed Chondrus crispus to controlled and natural stresses. New Phytol. 2007;176(1):45-55. https://doi.org/10.1111/j.1469-8137.2007.02152.x
  7. Conesa A, Gotz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008; https://doi.org/10.1155/2008/619832.
  8. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674-6. https://doi.org/10.1093/bioinformatics/bti610
  9. Day JP, Neefus CD, Yarish C. Development of a modular integrated recirculating aquaculture system using Porphyra for bioremediation of marine finfish effluent. J Phycol. 2009;45:31-2.
  10. Dring MJ. Stress resistance and disease resistance in seaweeds: the role of reactive oxygen metabolism. Adv Bot Res. 2005;43:175-207.
  11. Eriksen RL. Population genetics and organism-environment interactions of Porphyra umbilicalis Kutzing in the Gulf of Maine Doctoral thesis University of New Hampshire 2014.
  12. Eriksen RL, Green LA, Klein AS. Genetic variation within and among asexual populations of Porphyra umbilicalis Kutzing (Bangiales, Rhodophyta) in the Gulf of Maine, USA. Bot Mar. 2016;59(1):1-12. https://doi.org/10.1515/bot-2015-0017
  13. Gantt E, Berg GM, Bhattacharya D, Blouin NA, Brodie JA, Chan CX, Collen J, Cunningham FX Jr, Gross J, Grossman AR, Karpowicz S. Porphyra: complex life histories in a harsh environment: P. umbilicalis, an intertidal red alga for genomic analysis. In: Red algae in the genomic age. Netherlands: Springer; 2010. p. 129-48.
  14. Garside C, Garside JC. Nutrient sources and distributions in Cobscook Bay. Northeast Nat. 2004;11(sp2):75-86.
  15. Gibson G, Weir B. The quantitative genetics of transcription. Trends Genet. 2005;21(11):616-23. https://doi.org/10.1016/j.tig.2005.08.010
  16. Glass ADM, Britto DT, Kaiser BN, Kronzucker HJ, Kumar A, Okamoto M, Rawat SR, Siddiqi MY, Silim SM, Vidmar JJ, Zhuo D. Nitrogen transport in plants, with an emphasis on the regulation of fluxes to match plant demand. J Plant Nutr Soil Sci. 2001;164(2):199-207. https://doi.org/10.1002/1522-2624(200104)164:2<199::AID-JPLN199>3.0.CO;2-K
  17. Gonzalez DJ, Gonzalez RA, Froelich BA, Oliver JD, Noble RT, McGlathery KJ. Non-native macroalga may increase concentrations of Vibrio bacteria on intertidal mudflats. Marine Ecol Prog Ser. 2014;505:29-36. https://doi.org/10.3354/meps10771
  18. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A. High-throughput functional annotation and data mining with the Blast2GO suite. Nuc Acids Res. 2008;36(10):3420-35. https://doi.org/10.1093/nar/gkn176
  19. Green LA, Neefus CD. The effects of short-and long-term freezing on Porphyra umbilicalis Kutzing (Bangiales, Rhodophyta) blade viability. J Exp Mar Biol Ecol. 2014;461:499-503. https://doi.org/10.1016/j.jembe.2014.10.001
  20. Green LA, Neefus CD. Effects of temperature, light level, and photoperiod on the physiology of Porphyra umbilicalis Kutzing from the Northwest Atlantic, a candidate for aquaculture. J Appl Phycol. 2016;28(3):1815-26. https://doi.org/10.1007/s10811-015-0702-6
  21. Kim JK, Kraemer GP, Neefus CD, Chung IK, Yarish C. Effects of temperature and ammonium on growth, pigment production and nitrogen uptake by four species of Porphyra (Bangiales, Rhodophyta) native to the New England coast. J Appl Phycol. 2007;19(5):431-40. https://doi.org/10.1007/s10811-006-9150-7
  22. Kong F, Cao M, Sun P, Liu W, Mao Y. Selection of reference genes for gene expression normalization in Pyropia yezoensis using quantitative real-time PCR. J Appl Phycol. 2015;27:1003-10. https://doi.org/10.1007/s10811-014-0359-6
  23. Lobban CS, Harrison PJ. Seaweed ecology and physiology. New York, USA: Cambridge University Press; 1997.
  24. Mahmud ZH, Neogi SB, Kassu A, Mai Huong BT, Jahid IK, Islam MS, Ota F. Occurrence, seasonality and genetic diversity of Vibrio vulnificus in coastal seaweeds and water along the Kii Channel, Japan. FEMS Microbiol Ecol. 2008;64(2):209-18. https://doi.org/10.1111/j.1574-6941.2008.00460.x
  25. Mahmud ZH, Neogi SB, Kassu A, Wada T, Islam MS, Nair GB, Ota F. Seaweeds as a reservoir for diverse Vibrio parahaemolyticus populations in Japan. Int J Food Microbiol. 2007;118(1):92-6. https://doi.org/10.1016/j.ijfoodmicro.2007.05.009
  26. Martinez JN, Padilla PI. Isolation and characterization of agar-digesting Vibrio species from the rotten thallus of Gracilariopsis heteroclada Zhang et Xia. Marine Environ Res. 2016;119:156-60. https://doi.org/10.1016/j.marenvres.2016.05.023
  27. Mathieson AC, Hehre EJ, Reynolds NB. Investigations of New England marine algae I: a floristic and descriptive ecological study of the marine algae at Jaffrey Point, New Hampshire, USA. Bot Mar. 1981a;24:521-32.
  28. Mathieson AC, Reynolds NB, Hehre EJ. Investigations of New England marine algae II: the species composition, distribution and zonation of seaweeds in the Great Bay Estuary System and the adjacent open coast of New Hampshire. Bot Mar. 1981b;24(10):533-44.
  29. Miranda LN, Hutchison K, Grossman AR, Brawley SH. Diversity and abundance of the bacterial community of the red macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae? PLoS One. 2013;8(3):e58269. https://doi.org/10.1371/journal.pone.0058269
  30. Morrice LM, McLean MW, Long WF, Williamson FB. Porphyran primary structure. In: Bird C, Ragan M, editors. Eleventh International Seaweed Symposium, vol. 22: Developments in Hydrobiology. Springer Netherlands; 1984. p. 572-5. https://doi.org/10.1007/978-94-009-6560-7_118.
  31. Nettleton J. Tracking environmental trends in the Great Bay Estuarine System: an examination of water quality and nuisance macroalgal blooms. Durham: Doctoral thesis University of New Hampshire; 2012.
  32. Norall TL, Mathieson AC. Nutrient studies of the Great Bay Estuary System Jackson Estuarine Laboratory. Durham, New Hampshire: University of New Hampshire; 1974.
  33. Ott FD. A selected listing of xenic algal cultures, vol. 72. Woods Hole: Systematics-Ecology Program, Marine Biological Laboratory; 1966.
  34. Page AF. Detection and avoidance of polysaccharides in plant nucleic acid extractions Thermo Fisher Scientific, Wilmington, DE, USA. 2010.
  35. Pfaffl MW. Quantification strategies in real-time polymerase chain reaction. Quantitative real-time PCR. Appl Microbiol. 2012;53-62.
  36. Preite V, Snoek LB, Oplaat C, Biere A, Putten WH, Verhoeven KJF. The epigenetic footprint of poleward range-expanding plants in apomictic dandelions. Mol Ecol. 2015;24(17):4406-18. https://doi.org/10.1111/mec.13329
  37. PREP State of Our Estuaries Piscataqua Region Estuaries Partnership, Durham, New Hampshire, USA. 2013.
  38. Randall DJ, Tsui TKN. Ammonia toxicity in fish. Mar Pollut Bull. 2002;45(1):17-23. https://doi.org/10.1016/S0025-326X(02)00227-8
  39. Raven JA. Nutrient transport in microalgae. Adv Microbial Physiol. 1980;21:47-226.
  40. Redmond S, Green LA, Yarish C, Kim J, Neefus C. New England seaweed culture handbook. 2014.
  41. Reed RH. Solute accumulation and osmotic adjustment. In: Cole KM, Sheath RG, editors. Biology of the red algae. New York: Cambridge University Press; 1990. p. 147-70.
  42. Reed RH, Collins JC, Russell G. The effects of salinity upon cellular volume of the marine red alga Porphyra purpurea (Roth) C Ag. J Exp Bot. 1980;31(125):1521-37. https://doi.org/10.1093/jxb/31.6.1521
  43. Sampath-Wiley P, Neefus CD, Jahnke LS. Seasonal effects of sun exposure and emersion on intertidal seaweed physiology: fluctuations in antioxidant contents, photosynthetic pigments and photosynthetic efficiency in the red alga Porphyra umbilicalis Kutzing (Rhodophyta, Bangiales). J Exp Mar Biol Ecol. 2008;361(2):83-91. https://doi.org/10.1016/j.jembe.2008.05.001
  44. Smith CM, Berry JA. Recovery of photosynthesis after exposure of intertidal algae to osmotic and temperature stresses: comparative studies of species with differing distributional limits. Oecologia. 1986;7:6-12.
  45. Taiz L, Zeiger E. Plant Physiology. 5th ed. Sunderland: Sinauer Associates, Inc Publishers; 2010.
  46. Teasdale B, West A, Taylor H, Klein A. A simple restriction fragment length polymorphism (RFLP) assay to discriminate common Porphyra (Bangiophyceae, Rhodophyta) taxa from the Northwest Atlantic. J Appl Phycol. 2002;14(4):293-8. https://doi.org/10.1023/A:1021180315743
  47. Teo SS, Ho CL, Teoh S, Rahim RA, Phang SM. Transcriptomic analysis of Gracilaria changii (Rhodophyta) in response to hyper- and hypo-osmotic stresses. J Phycol. 2009;45(5):1093-9. https://doi.org/10.1111/j.1529-8817.2009.00724.x
  48. Trowbridge P, Wood PE, Wood MA, Underhill JT, Healy DS. New Hampshire Department of Environmental Services. Great Bay nitrogen non-point source study R-WD-13-10. 2014.
  49. Uji T, Takahashi M, Saga N, Mikami K. Visualization of nuclear localization of transcription factors with cyan and green fluorescent proteins in the red alga Porphyra yezoensis. Mar Biotechnol. 2010;12(2):150-9. https://doi.org/10.1007/s10126-009-9210-5
  50. Verhoeven KJ, Jansen JJ, van Dijk PJ, Biere A. Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. 2010;185(4):1108-18. https://doi.org/10.1111/j.1469-8137.2009.03121.x
  51. Verhoeven KJ, Preite V. Epigenetic variation in asexually reproducing organisms. Evolution. 2014;68(3):644-55. https://doi.org/10.1111/evo.12320
  52. Wang W-J, Wang F-J, Zhu J-Y, Sun X-T, Yao C-Y, Xu P. Freezing tolerance of Porphyra yezoensis (Bangiales, Rhodophyta) gametophyte assessed by chlorophyll fluorescence. J Appl Phycol. 2011;23(6):1017-22. https://doi.org/10.1007/s10811-010-9634-3.
  53. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B. gplots: various R programming tools for plotting data R package version 301. 2016. https://cran.r-project.org/web/packages/gplots/index.html.
  54. West AL, Mathieson AC, Klein AS, Neefus CD, Bray TL. Molecular ecological studies of New England species of Porphyra (Rhodophyta, Bangiales). Nova Hedwigia. 2005;80(1-2):1-24. https://doi.org/10.1127/0029-5035/2005/0080-0001
  55. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J. WEGO: a web tool for plotting GO annotations. Nucleic acids research. 2006;34(suppl_2):W293-W297. https://doi.org/10.1093/nar/gkl031
  56. Zar JH. Biostatistical analysis. 4th ed. New Jersey: Prentice Hall; 1999. p. 663.

피인용 문헌

  1. Difference in Nitrogen Starvation-Inducible Expression Patterns among Phylogenetically Diverse Ammonium Transporter Genes in the Red Seaweed Pyropia yezoensis vol.10, pp.8, 2018, https://doi.org/10.4236/ajps.2019.108096
  2. Low temperature causes discoloration by repressing growth and nitrogen transporter gene expression in the edible red alga Pyropia yezoensis vol.159, pp.None, 2020, https://doi.org/10.1016/j.marenvres.2020.105004