• Title/Summary/Keyword: antimicrobial membrane

Search Result 194, Processing Time 0.031 seconds

Copper-based Surface Coatings and Antimicrobial Properties Dependent on Oxidation States (구리 기반 표면코팅 및 산화수에 따른 항균·항바이러스 특성)

  • Sangwon Ko
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.479-487
    • /
    • 2023
  • Copper is cost-effective and abundantly available as a biocidal coating agent for a wide range of material surfaces. Natural oxidation does not compromise the efficacy of copper, allowing it to maintain antimicrobial activity under prolonged exposure conditions. Furthermore, copper compounds exhibit a broad spectrum of antimicrobial activity against pathogenic yeast, both enveloped and non-enveloped types of viruses, as well as gram-negative and gram-positive bacteria. Contact killing of copper-coated surfaces causes the denaturation of proteins and damage to the cell membrane, leading to the release of essential components such as nucleotides and cytoplasm. Additionally, redox-active copper generates reactive oxygen species (ROS), which cause permanent cell damage through enzyme deactivation and DNA destruction. Owing to its robust stability, copper has been utilized in diverse forms, such as nanoparticles, ions, composites, and alloys, resulting in the creation of various coating methods. This mini-review describes representative coating processes involving copper ions and copper oxides on various material surfaces, highlighting the antibacterial and antiviral properties associated with different oxidation states of copper.

Antimicrobial and Biogenic Amine-Degrading Activity of Bacillus licheniformis SCK B11 Isolated from Traditionally Fermented Red Pepper Paste (전통고추장에서 유해균 억제 및 Biogenic Amines 분해 능력을 가지는 Bacillus licheniformis SCK B11의 분리)

  • Kim, Yong-Sang;Jeong, Jin-Oh;Cho, Sung-Ho;Jeong, Do-Yeon;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.163-170
    • /
    • 2012
  • In order to inhibit the growth of pathogens and degrade biogenic amines during the fermentation of soybean products, an isolate with antimicrobial activity against pathogens and biogenic amine-degrading property was obtained from 83 traditionally fermented soybean products. The morphological and biochemical tests and the phylogenetic relationship among 16S rRNA gene sequences indicated that the isolate named as the strain SCK B11 was most closely related to Bacillus licheniformis. The cell-free supernatant of two day cultures was active against several pathogens including Enterococcus faecalis, Listeria monocytosis, Micrococcus luteus, Pseudomonas aeruginosa, Bacillus cereus, and Staphylococcus aureus. PCR analysis was conducted to determine relatedness to antimicrobial lantibiotics and biosurfactants produced by Bacillus spp., but showed negative for the genes encoding surfactin, lichenysin, and lichenicidine. Electron microscopic observation indicated that the antimicrobial agent seemed to attack the membrane of the pathogens, leaving the ghost or shrunken cells. The strain was found to degrade histamine by 72% and tyramine by 66% in the cooked soybean containing 5.3% of biogenic amine over 10 days of fermentation time. The use of selected strain would be a potential control measure in manufacturing traditionally fermented soybean products that are difficult to control pathogens and biogenic amine levels.

Styraxjaponoside A and B, Antifungal Lignan Glycosides Isolated from Styrax japonica S. et Z.

  • Park, Cana;Cho, Jae-Yong;Hwang, Bo-Mi;Hwang, In-Sok;Kim, Mi-Ran;Woo, Eun-Rhan;Lee, Dong-Gun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.420-425
    • /
    • 2010
  • The antifungal effects and action mechanisms of styraxjaponoside A and B were investigated. Devoid of hemolytic effect, the compounds had significant effect against several human pathogenic fungal strains, with energy-independent manners. To understand the action mechanisms of the compounds, the flow cytometric analysis plotting the forward scatter and the side scatter, $DiBAC_4$(3) staining and DPH fluorescence analysis were conducted. The results indicated that the actions of the compounds were dependent upon the membrane-active mechanisms. The present study suggests that styraxjaponoside A and B exert their antimicrobial effects via membrane-disruptive mechanisms.

Characterization of Endolysin LysECP26 Derived from rV5-Like Phage vB_EcoM-ECP26 for Inactivation of Escherichia coli O157:H7

  • Park, Do-Won;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1552-1558
    • /
    • 2020
  • With an increase in the consumption of non-heated fresh food, foodborne shiga toxin-producing Escherichia coli (STEC) has emerged as one of the most problematic pathogens worldwide. Endolysin, a bacteriophage-derived lysis protein, is able to lyse the target bacteria without any special resistance, and thus has been garnering interest as a powerful antimicrobial agent. In this study, rV5-like phage endolysin targeting E. coli O157:H7, named as LysECP26, was identified and purified. This endolysin had a lysozyme-like catalytic domain, but differed markedly from the sequence of lambda phage endolysin. LysECP26 exhibited strong activity with a broad lytic spectrum against various gram-negative strains (29/29) and was relatively stable at a broad temperature range (4℃-55℃). The optimum temperature and pH ranges of LysECP26 were identified at 37℃-42℃ and pH 7-8, respectively. NaCl supplementation did not affect the lytic activity. Although LysECP26 was limited in that it could not pass the outer membrane, E. coli O157: H7 could be effectively controlled by adding ethylenediaminetetraacetic acid (EDTA) and citric acid (1.44 and 1.14 log CFU/ml) within 30 min. Therefore, LysECP26 may serve as an effective biocontrol agent for gram-negative pathogens, including E. coli O157:H7.

Investigation on the Surface Hydrophobicity and Aggregation Kinetics of Human Calprotectin in the Presence of Calcium

  • Yousefi, Reza;Ardestani, Susan K.;Saboury, Ali Akbar;Kariminia, Amina;Zeinali, Madjid;Amani, Mojtaba
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.407-413
    • /
    • 2005
  • Calcium and zinc binding protein, calprotectin is a multifunctional protein with broad spectrum antimicrobial and antitumoural activity. It was purified from human neutrophil, using a two-step ion exchange chromatography. Since surface hydrophobicity of calprotectin may be important in membrane anchoring, membrane penetration, subunits oligomerization and some biological roles of protein, in this study attempted to explore the effect of calcium in physiological range on the calprotectin lipophilicity. Incubation of human calprotectin ($50\;{\mu}g/ml$) with different calcium concentrations showed that 1-anilino-8-naphthalene sulfonic acid (ANS) fluorescence intensity of the protein significantly elevates with calcium in a dose dependent manner, suggesting an increase in calprotectin surface hydrophobicity upon calcium binding. Our study also indicates that calcium at higher concentrations (6, 8 and 10 mM) induces aggregation of human calprotectin. Our finding demonstrates that the starting time and the rate constant of calprotectin aggregation depend on the calcium concentration.

Antibacterial Mode of Action of β-Amyrin Promotes Apoptosis-Like Death in Escherichia coli by Producing Reactive Oxygen Species

  • Giyeol Han;Dong Gun Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1547-1552
    • /
    • 2022
  • β-Amyrin is a pentacyclic triterpene widely distributed in leaves and stems worldwide. The ability of β-amyrin to induce the production of reactive oxygen species (ROS) in microorganisms suggests its potential as an antimicrobial agent. Thus, this study aimed to elucidate the antibacterial mode of action of β-amyrin. We treated Escherichia coli cells with β-amyrin and found that it triggered ROS accumulation. Excessive stress caused by ROS, particularly hydroxyl radicals, induces glutathione (GSH) dysfunction. GSH protects cells from oxidative and osmotic stresses; thus, its dysfunction leads to membrane depolarization. The resultant change in membrane potential leads to the release of apoptotic proteins, such as caspases. The activated caspases-like protein promotes the cleavage of DNA into single strands, which is a hallmark of apoptosis-like death in bacteria. Apoptotic cells usually undergo events such as DNA fragmentation and phosphatidylserine exposure, differentiating them from necrotic cells, and the cells treated with β-amyrin in this study were positive for annexin V and negative for propidium iodide, indicating apoptosis-like death. In conclusion, our findings suggest that the antibacterial mode of action of β-amyrin involves the induction of ROS, which resulted in apoptosis-like death in E. coli.

Nanocomposite Water Treatment Membranes: Antifouling Prospective (수처리용 나노복합막: 방오의 관점에서)

  • Kim, Soomin;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.158-172
    • /
    • 2020
  • In the aspect of saving energy and water, facilitating the separation membrane for the water treatment has been rising recently as one of the possible solutions. However, microbial biofouling effect is the biggest obstacle that hinders reaching higher permeability over a prolonged period of nanofiltration operation. To solve this problem and fully utilize the filtration membranes with enhanced performance, largely two kinds of solutions are studied and the first and the most commonly mentioned type is the one using the silver nanoparticles. Since silver nanoparticles are important to be well tailored on membrane surface, various methods have been applied and suggested. Using silver nanoparticles however also has the drawbacks or possible toxicity risks, raising the need for other types of utilizing non silver particles to functionalize the membrane, such as copper, graphene or zinc oxides, and amine moieties. Each attempt included in either kind has produced some notable results in killing, preventing, or repelling the bacteria while at the same time, left some unsolved points to be evaluated. In this review, the effects of metal nanoparticles and other materials on the antifouling properties of water treatment membranes are summarized.

Antibacterial activity of Tonghyeonipal-dan against Methicillin-resistant Staphylococcus aureus (통현이팔단 에탄올 추출물의 Methicillin Resistant Staphylococcus aureus에 대한 항균활성)

  • KIM, In-Won;KANG, Ok-Hwa;KONG, Ryong;KWON, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.30 no.5
    • /
    • pp.15-21
    • /
    • 2015
  • Objectives : Methicillin-resistantStaphylococcus aureus(MRSA) is a human pathogen. New antibacterial agents are needed to treat MRSA-related infections. This study investigated the antibacterial activity of EtOH 70% extracts ofTonghyeonipal-dan(THD) which prescription is composed of oriental medicine against MRSA.Methods : The antibacterial activity of THD was evaluated against MRSA strains by using the Disc diffusion method, broth microdilution method, Checkerboard dilution test, and Time-kill test; its mechanism of action was investigated by bacteriolysis, detergent or ATPase inhibitors were used.Results : The minimum inhibitory concentration (MIC) of THD is 1,000~2,000 μg/mL against MRSA. In the checkerboard dilution test, fractional inhibitory concentration index (FICI) of THD in combination with antibiotics indicated synergy or partial synergism againstS. aureus. Furthermore, a time-kill assay showed that the growth of the tasted bacteria was considerably inhibited after 24 h of treatment with the combination of THD with selected antibiotics. For measurement of cell membrane permeability, THD 500 μg/mL along with concentration of Triton X-100 (TX) and Tris-(hydroxymethyl) aminomethane (TRIS) were used. In the other hand, N,N-dicyclohexylcarbodimide (DCCD) and Sodium azide (NaN3) were used as an inhibitor of ATPase. TX, TRIS, DCCD and NaN3 cooperation againstS. aureusshowed synergistic action.Conclusions : Accordingly, antimicrobial activity of THD was affected by cell membrane and inhibitor of ATPase were assessed. These results suggest that THD has antibacterial activity, and that THD extract offers great potential as a natural antibiotic against MRSA.

Antimicrobial, antifungal effect and safety verification using BCOP assay of extracts from Coptis chinensis (황련(Coptis chinensis) 추출물의 항균, 항진균 효과와 BCOP 분석을 이용한 안전성 검증)

  • Kim, Eun-Hee;Jang, Young-Ah;Kim, Sol-Bi;Kim, Han-Hyuk;Lee, Jin-Tae
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.297-304
    • /
    • 2018
  • Coptis chinensis is used in oriental medicine for soothing, anti-inflammation, antimicrobial and antipyretic properties, and its main ingredient berberine is known to have strong antibacterial activity. In this study, we investigated the anti-microbial effect of hot water extract of Coptis chinensis (CW) on skin related microorganism and the airborne microbe, the antifungal effects of fungi, which are frequently detected in residential environments. CW showed antibacterial effect against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis, against the airborne microbe, which was collected in four different places. At the concentration of 100 mg/mL, the antimicrobial activity continued for 42 days, showed heat stability without change in the antimicrobial activity even after heat treatment. The MIC and MBC of CW against S. aureus was 0.03, 0.05 mg/mL, against S. epidermidis was 0.50, 0.75 mg/mL and against P. acne was 0.10, 0.15 mg/mL. As a result of measuring the MIC of four kinds of fungi with high detection frequency in the surrounding environment, Gliocladium virens was 65 mg/mL by determined as MIC which can inhibit one hundred percent of mycelial growth. The concentration 90 mg/mL was determined as MIC against Aureobasidium pullulans and 100 mg/mL against Penicilium pinophilum and Chaetomium globosum. CW was considered a safe extract that showed no irritation even in the ocular mucous membrane irritation evaluation test, a patch test. Therefore, these results suggest that Coptis chinensis has antimicrobial, antifungal and safety on human body and can be applied to the development of materials for cosmetic and residential environment industries.

Enhancement of Antimicrobial Activity of Nano-Encapsulated Horseradish Aqueous Extracts Against Food-Borne Pathogens (고추냉이 수용성 추출물의 나노 입자화를 통한 식중독 미생물에 대한 항균 활성 증진)

  • Seo, Yong-Chang;Choi, Woon-Yong;Kim, Ji-Seon;Zou, Yun-Yun;Lee, Choon-Geun;Ahn, Ju-Hee;Shin, Il-Shik;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.6
    • /
    • pp.389-397
    • /
    • 2010
  • This work was to improve antimicrobial activities of horseradish by encapsulated with edible biopolymers such as lecithin and gelatin since it has been difficult to directly use horseradish extracts into foods and food containers due to its strong and undesirable flavors. It was shown that most of the nanoparticles containing the extracts were well formed in round shape with below 400 nm diameter as well as fairly stable and less odd flavors in various pH ranges by measuring zeta potentials. The encapsulation efficiencies of nanoparticles were estimated as 66.6% and 53.4% for lecithin and gelatin, respectively. Minimal Inhibitory Concentration (MIC) of both nanoparticles against G(+), Listeria monocytogenes and G(-), Salmonella typhimurium were also measured as 79 ppm based on AIT concentrations in the extracts, whose activities were about 65% higher than the case of adding crude extract. It was also found that the nanoparticles efficiently penetrated into the cell membrane and started to destruct the cells after 6 hours cultivation under Transmision Electron Microscopy observation. These results prove that the nano-encapsulation of the horseradish extracts can be employed to directly treat into the foods and food containers for antimicrobial purposes with the aids of aerosolization system, by using small amounts of the extracts and having less flavors due to masking effects of nanoparticles.