DOI QR코드

DOI QR Code

Styraxjaponoside A and B, Antifungal Lignan Glycosides Isolated from Styrax japonica S. et Z.

  • Park, Cana (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Cho, Jae-Yong (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Hwang, Bo-Mi (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Hwang, In-Sok (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Mi-Ran (College of Pharmacy, Chosun University) ;
  • Woo, Eun-Rhan (College of Pharmacy, Chosun University) ;
  • Lee, Dong-Gun (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • Received : 2010.07.13
  • Accepted : 2010.08.18
  • Published : 2010.10.31

Abstract

The antifungal effects and action mechanisms of styraxjaponoside A and B were investigated. Devoid of hemolytic effect, the compounds had significant effect against several human pathogenic fungal strains, with energy-independent manners. To understand the action mechanisms of the compounds, the flow cytometric analysis plotting the forward scatter and the side scatter, $DiBAC_4$(3) staining and DPH fluorescence analysis were conducted. The results indicated that the actions of the compounds were dependent upon the membrane-active mechanisms. The present study suggests that styraxjaponoside A and B exert their antimicrobial effects via membrane-disruptive mechanisms.

Keywords

References

  1. Ayres, D. and Loike, J. D. (1990). Chemistry and pharmacology of natural products. Lignans: chemical, biological and clinical properties. Cambridge University Press., Cambridge.
  2. Butler, M. S. and Buss, A. D. (2006). Natural products-the future scaffolds for novel antibiotics. Biochem. Pharmacol. 71, 919-929. https://doi.org/10.1016/j.bcp.2005.10.012
  3. Davies, J. (2007). Microbes have the last word. A drastic reevaluation of antimicrobial treatment is needed to overcome the threat of antibiotic-resistant bacteria. EMBO Rep. 8, 616-621. https://doi.org/10.1038/sj.embor.7401022
  4. Fox, J. L. (2006). The business of developing antibacterials. Nat. Biotechnol. 24, 1521-1528. https://doi.org/10.1038/nbt1206-1521
  5. Frohlich, K. U. and Madeo, F. (2000). Apoptosis in yeast--a monocellular organism exhibits altruistic behaviour. FEBS Lett. 473, 6-9. https://doi.org/10.1016/S0014-5793(00)01474-5
  6. Jain, B., Martin, E., Stueben, A. and Bhakdi, S. (1995). Susceptibility testing of Candida albicans and Aspergillus species by a simple microtiter menadione-augmented 3-(4,5- dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. J. Clin. Microbiol. 33, 661-667.
  7. Kim, M. R., Moon, H. I., Chung, J. H., Moon, Y. H., Hahm, K. S. and Woo, E. R. (2004). Matrix metalloproteinase-1 inhibitor from the stem bark of Styrax japonica S. et Z. Chem. Pharm. Bull. 52, 1466-1469. https://doi.org/10.1248/cpb.52.1466
  8. Kleinberg, M. (2006). What is the current and future status of conventional amphotericin B? Int. J. Antimicrob. Agents. 27, 12-16. https://doi.org/10.1016/j.ijantimicag.2006.03.013
  9. Lee, J., Choi, Y., Woo, E. R. and Lee, D. G. (2009). Isocryptomerin, a novel membrane-active antifungal compound from Selaginella tamariscina. Biochem. Biophys. Res. Commun. 379, 676-680. https://doi.org/10.1016/j.bbrc.2008.12.030
  10. Lee, J. and Lee, D. G. (2009). Antifungal properties of a peptide derived from the signal peptide of the HIV-1 regulatory protein, Rev. FEBS Lett. 583, 1544-1547. https://doi.org/10.1016/j.febslet.2009.03.063
  11. Liao, R. S., Rennie, R. P. and Talbot, J. A. (1999). Assessment of the effect of amphotericin B on the vitality of Candida albicans. Antimicrob. Agents Chemother. 43, 1034-1041.
  12. Lou, P. H., Hansen, B. S., Olsen, P. H., Tullin, S., Murphy, M. P. and Brand, M. D. (2007). Mitochondrial uncouplers with an extraordinary dynamic range. Biochem. J. 407, 129-140. https://doi.org/10.1042/BJ20070606
  13. Okamoto-Shibayama, K., Yutaka, S. and Toshifumi A. (2010). Resveratrol Impaired the Morphological Transition of Candida albicans Under Various Hyphae-Inducing Conditions. J. Microbiol. Biotechnol. 20, 942-945. https://doi.org/10.4014/jmb.0911.11014
  14. Park, C., Woo E. R. and Lee D. G. (2010). Anti-Candida property of a lignan glycoside derived from Styrax japonica S. et Z. via membrane-active mechanisms. Mol. Cells 29, 581- 584.
  15. Projan, S. J. and Shlaes, D. M. (2004). Antibacterial drug discovery: is it all downhill from here? Clin. Microbiol. Infect. 10, 18-22.
  16. Saleem, M., Kim, H. J., Ali, M. S. and Lee, Y. S. (2005). An update on bioactive plant lignans. Nat. Prod. Rep. 22, 696- 716. https://doi.org/10.1039/b514045p
  17. Saleem, M., Nazir, M., Ali, M. S., Hussain, H., Lee, Y. S., Riaz, N. and Jabbar, A. (2010). Antimicrobial natural products: an update on future antibiotic drug candidates. Nat. Prod. Rep. 27, 238-254. https://doi.org/10.1039/b916096e
  18. Veerman, E. C., Valentijn-Benz, M., Nazmi, K., Ruissen, A. L., Walgreen-Weterings, E., Van Marle, J., Doust, A. B., Van’t Hof, W., Bolscher, J. G. and Amerongen, A. V. (2007). Energy depletion protects Candida albicans against antimicrobial peptides by rigidifying its cell membrane. J. Biol. Chem. 282, 18831-18841. https://doi.org/10.1074/jbc.M610555200
  19. Vincent, M., England, L. S. and Trevors, J. T. (2004). Cytoplasmic membrane polarization in Gram-positive and Gramnegative bacteria grown in the absence and presence of tetracycline. Biochim. Biophys. Acta. 1672, 131-134. https://doi.org/10.1016/j.bbagen.2004.03.005
  20. Wilson, D. F. and Chance, B. (1967). Azide inhibition of mitochondrial electron transport. I. The aerobic steady state of succinate oxidation. Biochim. Biophys. Acta. 131, 421-430. https://doi.org/10.1016/0005-2728(67)90002-3
  21. Zelezetsky, I., Pacor, S., Pag, U., Papo, N., Shai, Y., Sahl, H.-G. and Tossi, A. (2005). Controlled alteration of the shape and conformational stability of alpha-helical cell-lytic peptides: effect on mode of action and cell specificity. Biochem. J. 390, 177-188. https://doi.org/10.1042/BJ20042138

Cited by

  1. Plant bioactive molecules bearing glycosides as lead compounds for the treatment of fungal infection: A review vol.93, 2017, https://doi.org/10.1016/j.biopha.2017.06.077
  2. Plants: A natural solution to enhance raw milk cheese preservation? vol.130, pp.None, 2020, https://doi.org/10.1016/j.foodres.2019.108883